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PREFACE

This report describes work performed under contract DACA72-86-C-0004 for
the U.S. Army Engineer Topographic Laboratories, Fort Belvoir, Virginia 22060-
5546 by Advanced Decision Systems, Mountain View, California 94043-1230. The
Contracting Officer's Technical Representative has been Dr. P.F. Chen.
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Hevenor for their many helpful suggestions throughout the course of the effort.
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1. EXECUTIVE SUMMARY

Advanced Decision Systems (ADS) is pleased to submit this final technical
report on research undertaken during the Linear Feature Extraction {rom Radar
Imagery effort (contract #DACA72-86-C-0004). The goal of this effort has been
to develop and demonstrate prototype processing capabilities for a knowiedge-
based system to automatically extract and analyze linear features from synthetic
aperture radar (SAR) imagery. This effort constitutes Phase II funding through
the Defense Small Business Innovative Research (SBIR) Program. The previous
Phase I (contract DACA72-84-C-0014) work examined the feasibility of and tech-
nology issues involved in the development of an automated linear feature extrac-
tion system Ll4] This final report reviews the approach taken and discusses algo-
rithms which implement the automatic recognition of three significant terrain
feature classes: natural terrain features (e.g., forests, fields), cultural features (e.g,
bridges), and extended cultural features (e.g., roads).

1.1 BACKGROUND OF PROBLEM

A vitally important problem facing the Department of Defense is the ability
to quickly and efficiently analyse remotely sensed image data. This analysis is
used for a variety of applications ranging from automated map making/updating
to a variety of surveillance tasks, to other military and commercial remote seusing
applications. An increasingly important and useful sensing capability is provided
by synthetic aperture radar (SAR) imagery.

Imaging radar sensors provide all-weather, day/night, and cloud penetration
capabilities for a variety of applications. Technical capabilities now allow enor-
mous volumes of such imagery to be automatically produced in relatively short
periods of time. However, the current methods for analysis and interpretation of
radar imagery largely consist of manual examination by human experts. As the
quantity of imagery expands, the requirements for timely and efficient feature
classification and the scarcity of radar image interpreters point to the need for an
automaied system for feature extraction and classidcation.

Linear features such as roads, rivers, bridges, and railroads are major land-
marks in such imagery. Extracting and analyzing such features are prerequisites
for most analysis applications. Traditional linear feature extraction techniques
(edge detection and region segmentation) tend to perform adequately for low
noise, high resolution visible imagery. However, the relatively poor quality and
the complexity of the observed scenes in radar imagery make these feature extrac-
tion techniques less effective.

The ability to automatically detect and analyze linear features will have a
major payoff for numerous applications. Technology to provide such an
automated capability is emerging from the fields of image understanding (IU) and
artificial intelligence (AI). Such a system could incorporate knowledge about the
scene and use context (from the image or external sources such as digital terrain
maps or terrain object models) to intelligently guide and interpret the extraction
process. The results of the Phase I SBIR effort were encouraging in showing the
feasibility of this approach. An automated system would greatly enhance the
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Arm/'s capability for aerial cartography, change detection, aerial surveillance, and
autcaomous navigation. The goal of this effort is to pave the way for such a sys-
tew: by developing a largely automated terrain/image analysis workstation proto-
type.

There has been much work in artificial intelligence, computer vision, and
graphics that satisfies the individual requirements for object modeling capabilities.
Little has been done to integrate these diverse fields, especially for the domain of
SAR imaging. To date, the only vision systems tha% can interpret natural scenes
limit themselves to very restricted environments while other systems are restricted
to artificial objects and environments. A system which uses well defined shape
attribute inheritance among a set of progressively more complex object models,
and which generalises attachment relations to handle uncertainty begins to fulfill
the basic requirements. This system must also generate constraints on image
features from object models. Care must be taken sc that constraints on image
structures generated fiom the abstract instances of object models are specific
enough to generate initial correspondences between modeiz and image structures.
A rich set of image feature descriptions and robust object models that can adjust
the segmentation process directly during their instantistion are also crucial to an
automated system. Such object models are to be produced by ADS during the
Option II phase of this effort for a limited set of features. These minimal object
models must be able to dircci constrained searches against image data. Models
must eventually be capable of supporting learning and handling uncertainty in the
matching of image feature descriptions to multiple terrain features.

The basic motivations for such a system stem from the poor results associ-
ated with the undirected application of low level image processing techniques.
Environmental objects such as roads and rivers are semantic entities whose extrac-
tion requires contextual and object-specific knowledge which cannot be easily
incorporated into, for example, low level filtering operations. In fact, it has
become clear that a general and expandable system will have to incorporate pro-
cessing which reflects the actual reasoning invoived in expert SAR image interpre-
tation.

The purpose of the Phase II Effort and particularly of this final option is to

complete the design of an automated linear feature extraction system for SAR
imagery and to demonstrate this design in a prototype software embodiment.

1.2 APPROACH
The major steps of the Phase II effort have been to:
1. Develop the appropriate working environment to manipuiate and process
imagery.

2. Develop and experiment with various segmentation and feature extrac-
tion algorithms.

3. Determine significant terrain object feature properties and construct
representative object models.
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4. Experiment and evaluate model to image feature matching schemes.

5. Develop an approach for managing competing and conflicting hypothesis
matches.

6. Develop feature finders/predictors to support or contradict an expected
terrain feature's existence.

7. Implement a display interface to support the above processing steps.

Once the proper environment has been established, the system for deternin-
ing and extracting terrain features can be extensively tested. The purpose of these
experiments is to further establish the role of autonomous feature extraction from
SAR imagery and, indeed, the importance of SAR imagery to map generation.

1.3 SUMMARY OF ACCOMPLISHMENTS
The major results and research accomplishments of this effort are:
e demonstration and delivery of a software capability for extracting forested

areas, bridges, and roads from SAR imagery

o development and delivery of a LISP machine-based testbed environment
for undertaking experimentation and analysis on terrain feature extraction

e development of a set of SAR-based extraction algorithias

o development of a research plan and recommendations for completing
implementation of a real-time terrain feature extraction capability

The following describes in more detail the efforts accomplished on both the
Phase | effort and on the three portions of the Phase II effort (Base, Option I, and
Option M).

1.3.1 Phasel
The major accomplishments of the Phase I effort were to:
e Review and implement several edge and region extraction routinec from
optical image processing on SAR aerial imagery. Routines were evaluated
for their performance in order to determine which would be valuable for

integration into the general system.

e Obtain a better understanding of the nature of SAR aerial imagery and its
requirements for interpretation.

1-3
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e Investigate a variety of techniques for representing the properties of
environmental objects such as roads and rivers in SAR imagery.

o Desigr and begin component implementation of a model-based vision sys-
temn for the extraction of linear features from SAR aerial imagery. In par-
ticular, ADS implemented an initial image structure data base and experi-
mexcllulad with associated perceptua! grouping rules and simple SAR object
models.

A comprehensive report of Phase I results is available {14].

1.3.2 Phase II - Base Contract

The work performed by ADS under the Base Contract portion of Phase Il
addressed three different problem areas.

The primary work area focused on the continuation of the design produced
in the Phase I SBIR effort. The results of that design are described in [26.

The second major area in which ADS pursued the project goals was the
development and the design of a software environment in which to perform exper-
iments and begin to build the eventual prototype system. The basic framework of
this software was delivered to ETL in May 1987. The delivery emphasized neigh-
borhood and display operations. The software also contained the necessary
software “hooks’’ for future expansion into the other system components.

Finally, the last area of work undertaken as part of the Base Contract was
the continued experimentation with the government provided radar imagery.
Experimentation included algorithm surveys, hand processing sample imagery,
and actual algorithm implementation. This work and ADS’s general understand-
ing of machine vision, has been continually supporting the design and develop-
ment of the components of a model based vision system for linear feature extrac-
tion.

1.3.3 Phase Il - Optionl
The bulk of the work accomplished under this effort (described in [27]) per-
tained to the continuing effort to embody the system design in software. A major

software delivery to ETL of the processing framework was made in September
1987. The software included the following:

e Many of the relevant image processing routines used at ADS (converted to
run under Version 7 of the Symbolics LISP Machine operating system).

e The software for creating, manipulating, accessing, and editing image
structures (also called ‘‘perceptual structures’).

o The preliminary framework of the hypotheses database. (This database
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contains bypotheses about extended image structures. Functions that
provide for the creation of these structures are embodied in the “filter”
functions.)

¢ Enhanced user interface to display the image structures.

A User's Guide was prepared to accompany the delivered software. The
guide is written with the expert Symbolics Lisp Machine user in mind. At the
suggestion of ETL, a supplemental guide was issued to address the needs of those
users not intimately familiar with the Symbolics environment. In addition to the
documentation, ADS held two tutorial sessions at ETL. The first session was a
general ‘‘demonstration” of the software delivered. The second session was
oriented towards familiarizing the user with the software. Given the size and
complexity of the developmental environment, a subsequent visit was scheduled in
December 1987 to further assist ETL personnel in the use of the system. During
this visit some software ‘‘bug’ fixes were also accomplished.

Work was also initiated on the recognition procedures. The details of the
various terrain features were studied. In addition to the standard properties of
the individual features, of particular interest were the internal and external struc-
tures of the features. For example, the apparent image-based structure of a patii
of forest may be comprised of the textured area representing the bulk of the
forest, the bright leading edge of the patch, and the trailing shadowed region. All
three portions have entirely different ‘‘visual” characteristics, but each is an
important component of the recognition of the forest patch. An example of exter-
nal structure is best illustrated by a bridge. Typically, a bridge is detected as a
long, thin bright region. However, this is not a unique signature by itself. If this
bright region has roads extending from both ends and is surrounded on each side
by water, then a unique signature for a bridge begins to form. The bulk of the
effort in object structure recognition took place in Option II.

A source of difficulty for the Linear Feature Il project was the incompatibil-
ity of software environments at ADS and ETL, which occured when ETL installed
the Version 7 Operating System (OS) on the Symbolics LISP Machine. ADS’s
commitment to deliver software onto the Version 7 OS required extra effort and
overhead to port software between versions, which caused delays in the delivery of
important additions and bug fixes to ETL.

1.3.4 Phase II - Option II

During the final segment of this multi-phase program, ADS completed its
analysis of the knowledge and model structure required to represent terrain and
cultural features. The model consists of a number of layers corresponding to a
hierarchical view of the appearance of the object and its surroundings. The recog-
nition of the terrain feature is accomplished by an architecture which attempts to
match the predictions contained withiu the feature model with structure extracted
from the image. However, there is no a priori constraint on which layer of the
model is active at a given time. In practice, we implemented the architecture as a
bottom-up extraction step followed by a top-down model verification step for sim-
plicity and clarity.
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The recognition according to the feature models was accomplished by the
construction of “finders’” - algorithms which find instances of natural and man-
made features in the SAR imagery. Three finders were developed for forests (as
instances of natural area features), for roads (instances of man-made features
which are of extended length), and bridges (man-made features of local extent).
The demonstration of the finders completes this ADS study into automated linear
feature extraction.

ADS delivered and installed all software to. the customer site and described
its philosophy, approach, and methodology at a final review open to ETL person-
nel. ADS also described the operation of the software to interested personnel at a
separate tutorial session.

This work has made two important advances. First, a processing paradigm
has been developed which compresses and encodes the input into symbols
representing meaningful chunks. The net effect of this transform is to permit
more advanced segmentation and grouping algorithms to make the process more
reliable and efficient. Examples of such structures are textured regions which
correspond to interiors or boundaries of fields, forests, dirt road segments or simi-
lar features.

The second important improvement has been the use of high level feature
models to guide the extraction, interpretation and attributior of the features. In
object recognition applications, these feature models are the shapes that are stored
in the shape library. For those terrain objects whose shapes are typically con-
strained (e.g., buildings, bridges and radio towers), the feature models specify, in
fact, the shapes which will be positioned in the scene model. However, for terrain
objects whose shapes are less constrained (e.g., rivers, roads and forests), the
feature models contain rules to guide the image structure extraction routines and
also rules to specify how image structures corresponding to the same feature are t-
be merged. The major advantage over strict bottom up processing is that
knowledge from multiple sources can be used to guide the feature extraction.
Another advantage is that feature models can share domain knowledge with the
user and thus anticipate user interactions, thereby simplifying them.

This effort has identified key elements of a plan leading to the autonomous
intelligent behavior required of an Automated Linear Feature Extractizn system.

1.4 CONCLUSIONS

1.4.1 Lessons Learned
We draw a number of conclusions from this work:
e SAR as an imagery source yields significant information about numerous
classes of terrain features.

® Terrain feature recognition is a complex process requiring knowledge not
only of the feature’s intrinsic ‘‘signature’” but also of its component
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structure and its relations to other local terrain features. In fact, the
recognition of terrain features appzars to depend as much on external rela-
tionships to other neighboring objects, such as adjacency or collinearity,
as on intrinsic factors such as shape and texture. This contextual infor-
mation can make up for information loss due to low resclution.

e The recognition process itself cannot be strictly ‘“bottom-up’’ but must
aliow reliable knowledge from any source to guide the recognition.

® A modei-based reasoning paradigm is most appropriate for terrain feature
recognition and should incorporate:

o levels of abstraction
o 3D geometric/sensor reasoning
o heuristic models as well as analytic models

o models of feature interrelations and scene-level context

1.4.2 Expected Benefits

The significance of a competent system for automatic exploitation of terrain
imagery will be felt in a wide variety of military applications:

e Situation Assessment and Target Recognition

o Area Limitation (Identify and prioritize those areas likely {uv con-
tain the targets; delete from consideration those areas which can-
not contain targets.)

o Hypothesis Verification (Process the area surrounding a candidate
target to determine if the identification is consistent with the sur-
rounding terrain.)

e Database Generation (Describe the contents of the field of view as a juxta-
position of terrain features.)

o Map Making and Updating (Use the description to form or edit a
geographic database.)

o Mission Planning and Visualization (Use the description in con-

junction with an elevation or other 3-D map to simulate views
other than the original sensor perspective.)
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1.6 RECOMMENDATION FOR FUTURE RESEARCH

1.56.1 What is Needed

A continuation of the effort begun here should strive to extend the existing
terrain feature models, especially by incorporating higher level knowledge (e.g.,
roads lead into bridges, bridges cross rivers; rivers may be dry in the summer-
time). This knowledge may be available from existing terrain data bases, eleva-
tion maps, or reports. Also, while little effort was directed to issues of control and
focus of attention, the ability of a system to maintain robust recognition behavior
depends on a clear strategy to handle competing hypotheses and select a sequence
of actions which converge to a ““best’ scene interpretation.

We recommend that an evolutionary approach be taken to building the
Automated Terrain Feature Extraction system. In particular, the first steps
should address the extension of the current algorithmic base to include additional
segmentation approaches upon which new finders will depend. The crucial para-
digm is to develop intelligent algorithms with meaningful parameters which can
build objects with descriptions used for further reasoning steps. In this way, a
rich vocabulary of primitives will be available for further knowledge-based terrain
feature models.

1.6.2 A Plan for Automatic Terrain Feature Extraction

The following plan (see Figure 1-1) discusses the steps leading to an opera-
tional system. The key to building an automated feature extraction system is to
have competent low-level segmentation and processing algorithms which accept
high-level guidance from knowledge-based models. The competency of the algo-
rithms is not inherent but comes about because the algorithm can extract image
structures related to model predictions when given the right set of parameters.
This effort has developed a set of such algorichms based on the needs of a few
finders. This tech-base is barely sufficient to the finders studied. More complete
and knowledgeable finders will require some additional lower-level algorithms to
supplement the algorithm base.

Once this is done, the testbed will consist of a rich mix of algorithms and
models. The performance of these components must be studied and characterized
based on a larger set of test imagery. The major performance factors which are
relevant at this point are:

o the ability of the segmentation algorithms (even under human guidance!)
to extract competent descriptions of known existing features,

¢ the intelligence of the models to specify parameter values for the lower-
level segmentation algorithms which are similar to ‘‘optimal” choices

made by human operators,

¢ the end-to-end recognition rate for known targets and false alarms,
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~ « EXPLOIT THE EXISTING TESTBED

o EXTEND EXISTING TERRAIN FEATURE FINDERS TO WIDER
KNOWLEDGE BASE

o BUILD ADDITIONAL LOW-LEVEL EXTRACTION ROUTINES FOR
THE FINDERS

o CHARACTERIZE THE PERFORMANCE

EXPLORE ALTERNATIVE HARDWARE
o INEXPENSIVE GENERAL PURPOSE WORKSTATIONS - SUN, MAC II
o ADVANCED ARCHITECTURES - WARP, CONNECTION MACHINE

BUILD THE COMPLETE PROTOTYPE
o ADDRESS OUTSTANDING RESEARCH ISSUES .
o PROTOTYPE ADDITIONAL TERRAIN FEATURE FINDERS
o EVALUATE PERFORMANCE SHORTFALLS

BUILD A REALISTIC SYSTEM FOR TERRAIN DATABASE GENERATION

o REQUIREMENTS ANALYSIS: IMAGERY, TERRAIN FEATURES,
PERFORMANCE, USER INTERFACE

o DEVELOP COMPLETE TERRAIN FEATURE MODELS
o DESIGN AN OPERATIONAL SYSTEM

o BUILD THE SYSTEM

o TEST AND EVALUATE THE SYSTEM

Figure 1-1: Research and Development Plan

1-9




e some indication of the major throughput bottlenecks.

One issue associated with the performance analysis and the further expan-
sion of the testbed is the hardware environment. The current Symbolic: hardware
has become difficult to maintain and expensive to expand. It is recommended
that an alternative hardware base be considered, specifically a Sun or Mac II
eavironment. Lucid Common LISP would be the appropriate target language to
which to convert the existing LISP code. This would also be an opportune time
to consider the value of advanced architecture computers in improving the testbed
environment.

Once the lessons of the performance analysis and the issues of the hardware
environment are assimilated, the major remaining research issues should be
addressed:

e Extend the terrain model base

o model additional terrain features

o explore additional segmentation strategies

o incorporate a formal method of evidence accrual
e Develop extended control systems

o build a general system controller

o add a model-driven re-segmentation capability
e Utilize existing terrain databases

o guide initial terrain feature extraction

o automate terrain database revisions and updates

o assist both terrain and target change detection
e Extend heuristic sensor models

" o model IR, visible, multi-spectral, ...

o fuse multi-sensor information

Once the research issues are addressed and the performance of the prototype
has been evaluated, it will then be possible to begin the design of an operational
Linear Feature Extraction system.
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1.8 ORGANIZATION OF THIS DOCUMENT

Section 2 describes the technical approach taken for the development of the
Linear Feature Extraction (LFE) System. It begins with an overview of the archi-
tecture and continues with an in-depth description of each component. It con-
cludes with a discussion of the recogrition approach.

The descriptions and resuits of ihe prototype terrain feature recognition
algorithms (“finders’’) developed for this project are presented in Section 3.

Section 4 contains a glossary of relevant terms. References are provided in
Section 5.
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2. TECHNICAL APPRCACH

This section describes the technical approach designed by ADS to reliably
identify {errain features in SAR imagery. The technical approach is developed in
a top-down fashion. That is, the description begins at a conceptual level and then
becomes progressively more detailed.

The first section overviews the conceptual system architecture and the main
components in the proposed LFE system. The next section describes these sysiem
components in greater detail. The last section then describes algorithms
developed to demonstrate the technical approach as shown in Section 3.

2.1 OVERVIEW OF CONCEPTUAL SYSTEM ARCHITECTURE

2.1.1 Motivation

The following general observations have influenced the development of the
LFE technical approach: '

® The representation chosen for terrain features is critical to their reliable
extraction.

¢ Because individual low-level image features (e.g., edges, texture, homo-
geneity) are fairly sensitive to noise, reliable image interpretation should
be based upon a preponderance of terrain feature evidence.

¢ Terrain features should have spatial descriptions which relate to their
appearance in SAR imagery.

e The description of terrain features in imagery should occur at several lev-
els of abstraction (e.g., pixe!: regions, terrain objects).

¢ The models of terrain features should explicitly incorporate contextual
constraints at all levels of abstraction (e.g., pixel-level constraints, region-
level constraints, object-level constrairts).

¢ The design should support parallel processing.

Before describing each of the components of the system architecture, it may
be useful to define some terms used throughout the following sections.

Top-down (model-driven) information is derived from models of terrain
features. For example, top-down information from a road model can be used to
predict road width and to direct search in the iinage. Conversely, bottom-up
(data-driven) information is derived from the imagery without specific reference to
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terrain features. For example, bottom-up information can be used to recognize all
parallel lines in the image. In summary, bottom-up information flows from
imagery to terrain features and top-down information flows from terrain feature
models to image structures.

High-level (more abstract) information is provided at the terrain object level.
This level of abstraction allows the terrain features to be discussed as entities with
specific functional attributes. Conversely, low-level (less abstract) information
describes visible properties of the imagery without specific reference to terrain
objects (e.g., bright areas). This level allows the description of the image to be in
terms other than individual pixel values. There is a continuum between high-level
and low-level information that forms the intermediate levels of abstraction. In
general, any information which relates specifically to an object model is high-level;
information which describes image properties can be mid- to low-level.

2.1.2 System Overview

The conceptual system architecture is shown in Figure 2-1. A Query
Manager specifies the terrain features sought and the sensor context; execution of
tue query produces extracted terrain features. There are two core databases in the
system: the Image Structure Data Base (ISDB) and the Terrain Hypothesis Data
Base (THDB). These databases store intermediate processing results and interpre-
tations derived by the system. There are four main processing components of the
system which control *he contents of these databases: the Perceptual Grouper,
the Terrain Feature Modeler, the Hypothesis Manager, and the System Controller.
In general, the interpretaticn process cousists of the application of these main pro-
cessing componants to create and verify terrain hypotheses which are supported
by the databases.

The next subsections briefly describe each of these compounents.

2.1i.3 Iraage Structure Data Base

The Image Strucinre Data Base (ISDB) contains segmented image structures
which uescribe properties of the input imagery. Image structure descriptions in
the TSDB include the type of process which extracted it, when it was created, the
releve.nt parameters for tliat image structure, and appropriate access descriptors.
Some examples of segmented image structures are lines, parallel line pairs, homo-
geneous or textured regions, etc. These structures provide additional levels of
abstraction which yield a precise and useful description of image structure.

The interpretation process affects the ISDB in two basic ways. In one, the
Perceptual Grouper invokes bottom-up pirocesses which use current ISDB image
structures to create more abstract image structure descriptions; these more
abst: act, newly created structures are then placed into the TSDB. This bottom-up
image description process is shown in Figure 2-1 by the bidirectional dataflow
arrow between the Perceptual Grouper and the ISDB (the Perceptual Grouper will
be discussed in greater detail). This bottom-up process starts with the SAR
imagery as the initial contents in the ISDB. The other interpretation process uses
a vop-down Terrain Feature Modeler to interpret image structures in the ISDB.
This top-down interpretation process is shown in Figure 2-1 by the dataflow
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arrow from the ISDB to the Terrain Feature Modeler.

Interactions with the ISDB take the form of queries and entries which
specify particular image structures and relations. These queries are interpreted
into the primitive attributes and relations used in the database and they are
implemented in a library of functions and methods associated with the ISDB. For
example, finding bridgq can involve finding all BRIGHT image areas which are
STRAIGHT and THIN" Note that when interpreting queries, it is important to
consider how attributes such as BRIGHT, STRAIGHT, and THIN map onto par-
ticular parameter attribute ranges for image structures in the ISDB.

Results from queries to the ISDB are used in the recogniticn task to identify
salient image features. Because queried structures in the ISDB can be displayed
graphically, they form the basis of a user interface.

2.1.4 Perceptual Grouper

The Perceptual Grouper is the bottom-up component of the system which
extracts spatial image structures.

The input imagery describes the image in terms of pixels of varying inten-
sity. Though these intensities bear some physical relationship to the imaged
environment, they do not directly provide a sufficient description of the image
which can be used to define and reliably identify terrain models. The Perceptual
Grouper provides a richer image description by aggregating portions of the image
(e.g., pixels) into more abstract image structures (e.g., lines). As shown by the
double arrow in Figure 2-1, the Grouper retrieves and places these image struc-
tures into the ISDB.

The Perceptual Grouper consists of a library of routines for extracting edges
and lines, regions, texture, shape and other image features. A grouping routine
inputs image structures and processing parameters in order to produce another
image structure which describes another useful property of the image. Initially,
the SAR image is the only image structure in the ISDB; the first grouping routines
to be invoked are therefore low-level pixel-based processes (e.g., edge detectors).
The resulting image structures are then placed in the ISDB for use by subse-
quently invoked grouping routines or the Terrain Feature Modeler. In general,
grouping routines produce image structures which are more abstract than the
input image structures.

Figure 2-2 provides a simple example of image structures which can be pro-
duced by Perceptual Grouper routines. Edge image structures can be produced by
detectors which extract fairly straight local intensity boundaries; these edges are
then placed into the ISDB. Because these edges form two colinear groups, they
may be aggregated by a line finder into two line image structures; the edges can
thus be retrieved from the ISDB, grouped into lines, and the resulting lines can be
placed in the ISDB. Since these two lines are parallel to one another, a parallel

1 In addition to the naturalness of class descriptors (e.g., BRIGHT), research in fuzzy logic has
shown that the uvse of class descriptors to describe valued ranges results in better system perfor-
mance |22].
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grouper can be invoked to form a band image structure; the lines are retrieved.
grouped, and the band image structure is placed in the ISDB. Note that each rou-
tine in this example produces an image structure that is more abstract than its
input structures; that is, edges are more abstract than pixels, lines are more
abstract than edges, etc.

Section 2.2.1 discusses the Perceptual Grouper in greater devail.

2.1.6 Terrain Feature Modeler

The Terrain Feature Modeler predicts attributes and spatial relationships
among terrain features and spatial image structures., The Modeler contains all
information regarding terrain feature structure and characteristics. For each ter-
rain feature, this information is embodied in models which:

o define a bottom-up mapping from image structures in the ISDB to terrain
feature models (terrain hypothesis generation), and

o define top-down descriptions of terrain features which can be used to
evaluate terrain hypotheses selected by the Hypothesis Manager (terrain
hypothesis evaluation).

More details about this terrzin feature representation are provided in Sec-
tion 2.2.2 which discusses its underlying structural abstraction hierarchy.

The modeler has two primary roles in the interpretation process: bottom-up
hypothesis generation and top-down hypothesis evaluation.

The bottom-up component of the Modeler examines image structures in the
ISDB (as shown in Figure 2-1 by the arrow from the ISDB to the Terrain Feature
Modeler) in order to infer the presence of terrain features. These terrain
hypotheses are provided to the Hypothesis Manager (as shown in Figure 2-1 by
the arrow from the Modeler to the Hypothesis Manager). Thus, the Modeler is
responsible for bottom-up terrain hypothesis generation.

The Modeler is also responsible for evaluating terrain hypotheses that are
selected by the Hypothesis Manager (as shown in Figure 2-1 by the arrow from
the Hypothesis Manager to the Terrain Feature Modeler). Because initial terrain
hypotheses can be incorrect (especially since they are derived from inherently noisy
bottom-up information), accurate and reliable terrain feature recognition requires
that hypotheses be judged for correctness. Evaluating terrain feature hypotheses
requires specific terrain feature information; thus, the Modeler is responsible for
evaluating terrain hypotheses. As an example, bridges are usually surrounded on
either side by water and they are generally surrounded at either end by land. A
bridge model which incorporates these structural relationships can evaluate a
bridge hypothesis by seeking confirmation from surrounding spatial structures.

Section 2.2.2 discusses the Terrain Feature Modeler and its underlying
representation in greater detail.
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2.1.6 Hypothegis Manager and the Terrain Hypothesis Database

The Hypothesis Manager selects terrain hypotheses and evaluates them
using top-down contextual terrain information provided by the Modeler in order
to better determine the certainty underlying terrain hypotheses. These hypotheses
are contained within the Terrain Hypothesis Data Base (THDB). The Hypothesis
Manager is responsible for:

o selecting terrain hypotheses from the THDB whose certainty factors are to
be evaluated and updated,

e evaluating terrain hypotheses by invoking the top-down part of the Ter-
rain Feature Modeler which is responsible for testing hypotheses,

e using the Modeler evaluation of the terrain hypothesis to update the cer-
tainty assigned to the hypothesis in the THDB, and

o determining when the current terrain hypotheses are reliable and con-
sistent with each other, the imagery, and other contextual information.

The Hypothesis Manager selects terrain hypotheses from the Terrain
Hypothesis Data Base (THDB) (as shown in Figure 2-1 by the arrow from the
THDB to the Manager). Because the evaluation of a hypothesis requires specific
terrain feature information, the Manager obtains hypothesis evaluation from the .
Terrain Feature Modeler (as shown in Figure 2-1 by the arrow from the Modeier
to the Manager). The Manager uses these evaluations to update the certainty
assigned to hypotheses in the THDB (as shown in Figure :-1 by the arrow from
the Manager to the THDB).

Under some circumstances, the Query Manager may provide some initial
object hypotheses. For example, when a terrain map is available, map features
may be used for initial terrain hypotheses. The System Controller passes this
contextual information to the Hypothesis Manager (as shown by the downward
dataflow arrow in Figure 2-1) which then places them in the THDB.

The Hypothesis Manager is responsible for determining when terrain
hypotheses are reliable and consistent with one other, with the imagery, and with
other contextual information. The System Controller uses this determination to
decide when terrain recognition is complete for a given feature. When recognition
is complete, the Manager passes the extracted terrain feature descriptions to the
System Controller (as shown by the upward dataflow arrow in Figure 2-1); the
Controller then outputs the extracted features to the Query Manager.

Section 2.2.3 will discuss the Hypothesis Manager and the Terrain
Hypothesis Database in greater detail.

2-7




—

-

2.1.7 System Controller

The System Controller has two primary tasks; it handles query requests and
it coordinates system activity. As shown in Figure 2-1, the Controller receives
queries from the Query Manager. After translating these queries into system
operations, the Controller coordinates system activity and the interpretation pro-
cess. Figure 2-1 uses thin arrows to show control information. The Controller
uses information provided by the Hypothesis Manager, Modeler, and Grouper in
order to determine when terrain recognition is complete. The Controller then
obtains the final terrain hypotheses from the Hypothesis Manager (the upward
dataflow arrow in Figure 2-1), formats them into output form, and returns the
extracted features to the Query Manager (as shown in Figure 2-1).

Section 2.2.4 discusses System Controller issues in greater detail.

2.2 FUNCTIONAL COMPONENTS

The previous section presented a conceptual system architecture for the
automated extraction of terrain features. This section provides a more in-depth
description of the components in this architecture.

2.2.1 Perceptual Grouper

The original form of a SAR image is merely a collection of pixels of varying
intensity. Because these raw pixel values do not form a sufficiently rich language
to describe the appearance of terrain features, it has been well-established that
more abstract image structures (e.g., edges, lines, textured regions) are required in
order to s]upport the description and recognition of objects in imagery {1, 2, 5, 14,
18, 17, 19].

Perceptual grouping is the systematic spatial aggregation of more primitive
image structures into more abstract image structures {17]. Because the aggrega-
tion of pixels necessarily partitions areas of the image, this process can be con-
sidered a form of tmage segmentation. Image segmentation is concerned with
breaking an image into structural components (e.g., regions, lines, edges) that can
be used to support the interpretation process.

The Perceptual Grouper places image primitives into the ISDB which the
Terrain Modeler uses to form bottom-up descriptions of terrain models. These
bottom-up descriptions are used in the interpretation process to form hypotheses
about where terrain features occur in the imagery. The Grouper has two impor-
tant and related functions. First, it must partition the image into segments
which bear a structural relationship to the appearance of terrain features in SAR
imagery. For example, lines relate to roads, heavily textured regions relate to
forest, dim image areas relate to water, roads, and shadows, etc.; {20] enumerates
some relationships between image structures and terrain features. Secondly, the
Grouper must provide a description of extracted features which can be used to
construct bottom-up terrain feature models. For example, BRIGHT image regions
can be identified, but a spatial description of these regions is required in order for
the Modeler to ascribe semantic descriptions to these regions (e.g., for a bridge-like
region, to determine: whether the region is straight, which are the ends and the
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sides of these regions, what is the minimum width of a bridge, what is the orien-
tation of the bridge relative to expected surrounding structures such as water or
land). The next section, which discusses the Modeler, examiiies terrain modeling
issues in greater detail.

A detailed study and definition of perceptual grouping and organization
may be found in [17]. Section 2.3.1 describes some image structure extraction
algorithms that were investigated as part of this LFE effort.

2.2.2 Terrain Feature Modeler

The Terrain Feature Modeler is responsible for representing and maintaining
all terrain feature specific knowledge. Its bottom-up role is to relate image struc-
tures in the ISDB to object models in order to create inital terrain hypotheses. Its
top-down role in the interpretation process requires that it evaluate terrain
hypotheses provided to the Modeler by the Hypothesis Manager.

A large part of the LFE effort has concentrated on terrain feature model
definition and their measurement and verification from imagery. This effort led to
the development of a highly spatial description of terrain features which integrates
bottom-up and top-down model description. These terrain models are based upon
a well-developed structural hierarchy which relates the description of terrain
features in a model to their measurable occurrence in SAR imagery.

The next subsection describes the structural hierarchy which underlies the
terrain feature models used by the Terrain Feature Modeler. It describes a
geometric and hierarchical representation of terrain knowledge; this hierarchical
representation lays a strong algorithmic basis for understanding and implementing
an automated terrain feature extraction system.

2.2.2.1 Hierarchical Representation of Terrain Features

The terrain feature representation determines what aspects of terrain
features may be expressed. It also largely determines the ability to instantiate
and measure components of terrain feature models.

The description of a terrain feature does pot occur at a single level of
abstraction. Terrain features, and objects in general, have an inherent hierarchy
of structure. For example, cars are a type of vehicle, cars are comprised of bodies,
engines, wheels, etc.; wheels are comprised of tires, rims, lug nuts, valve stems,
etc; tires have tread, sidewalls, internal beit structure, etc. Similarly for terrain

features, there are inherent hierarchies with which terrain features may be well
modelled.

Figure 2-3 illustrates a structural hierarchy for terrain features. The basis
of this structural hierarchy is the locality of model information. At the bottom
level of the hierarchy are tmage feature properties. These properties encompass
very local, pixel-based properties of terrain features in imagery (e.g., brightness,
dimness, edges, texture). These image feature properties are then used to aggre-
gate pixels into larger regions. Regton properties describe the geometric and sta-
tistical properties of an aggregate of image pixels (e.g., its area, perimeter, shape,
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length, width, centroid). These region properties provide a more abstract way in
which terrain features may be described and modelled. The next higher level in
the structural hierarchy descrit.s local region properties which define the relative
spatial relationships between peighboring image areas (e.g., the fact that bridges
link road segments across water can be used to specify relationships between
bridge regions and the!- surrounding objects). At the top level of the hierarchy
are inter-object properties which provide global consistency checking and more
abstract reasoning (e.g.. ~dAres and roads form road networks which may link
buildings).

A basic characteristic of the hierarchy shown in Figure 2-3 is thai the local-
ity of constraints increases when moving down the hierarchy to the level of image
feature properties. If n is the number of elements at each level of processing, then
the size of n increases when moving down the hierarchy. That is, since higher
levels form larger spatial aggregates, there must be fewer elements at cach higher
level. As the locality of reference increases when moving up the i.:rarchy, the
noise immunity can improve since there are more constraints which cuu be used to
eliminate unmodelled data. For terrain features, these additional constraints at
higher levels in the hierarchy provide greater data/reasoning abstraction and ter-
rain hypothesis confidence.

The next sections describe each level in the structural hierarchy (shown in
Figure 2-3 in greater detail.

2.2.2.2 Image Feature Properties

Image feature properties describe pixel-level properties of terrain features in
SAR imagery. These properties are used to associate regions of an image which
are related by some pixel-level metric to the physical appearance of terrain
features in imagery.

The extraction of image feature properties uses pixel intensities within a
small loczl neighborhood. For example, a simple edge detector looks at a 3 x 3
local pixel neighborhood. Image feature properties extracted by these detections
are suggestive of terrain features, but they by no means provide a reliable indica-
tion of terrain feature presence. It is important to recognize that no single image
feature works all the time. Noise, computational limitations, and other factors
undermine the relationship of extracted image properties to terrain features. That
is, the mapping from image features to terrain features is not very reliable. A key
observation is that robust terrain feature recognition is derived from a preponder-
ance of tmage feature evidence. For example, Figure 2-4 shows some image struc-
tures and their relationship to some terrain features. Bridges appear as BRIGHT
image areas, which are HOMOGENEOUS, and bounded on either side by LINES.
Though any one of these image features may be unreliable, together they form a
more trustworthy indication of the presence of a bridge terrain feature. A more
detailed enumeration of the mapping from image structures to terrain features
may be found in [20].

As mentioned previously, the Perceptual Grouper is responsible for extract-
ing image feature properties and placing them in the ISDB. These image feature
properties are then used by the Modeler as the lowest level in the structural
hierarchy for terrain features. Section 2.3.1 discusses some of these image feature
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properties and their extraction from SAR imagery.

2.2.2.3 Region Properties

Contiguous pixels which share similar image feature properties can be aggre-
gated into regions. These regions provide a more abstract tool for deseribing ter-
rain features. Regton properties describe terrain feature properties for these aggre-
gated regions of pixels.

Region properties descriptively embody important aspects of terrain feature
structure. For example, if we wish to define a terrain model for bridges, there are
region properties that capture important aspects of bridges. Though bridges usu-
ally appear as BRIGHT image regions, all BRIGHT image regions need not be
bridges. It is possible to further distinguish and describe bridges by noting that
bridge regions (and their associated BRIGHT appearance in imagery) should have
particular properties; bridges are usually fairly straight, long, thin, bounded in
width, etc.

The second important role of region properties is to provide a local coordi-
nate system which allows the next level in the hierarchy to relate them to other
areas in the image. For example, a line and its endpoints fit to a ‘‘bridge” region
can denote the ‘‘ends’’ of the bridge and the ‘‘sides” of the bridge. This local
region coordinate system captures an important aspect of terrain feature descrip-
tions.

There are two basic ways to describe image region properties of terrain
features: geometric and value-based. Geometric region properties describe the
two-dimensional shape of the image region (e.g., area, length, width). Value-based
region properties specify the characteristics of the underlying image feature pro-
perties contained within the extent of the region (e.g., average intensity, standard

deviation of intensity). The following region properties have been found useful for
describing terrain features:

e Geometric-based region properties:
0 area
o perimeter (e.g., length, two-dimensional shape)
o length and width
o centroid
o best-fit line and endpoints

o upright minimum bounding rectangle (MBR)

o number and area of holes (i.e., area within the outer perimeter not
considered part of the region)

o straightness
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o cohesiveness (e.g., the ratio of holes to region area)

o perimeter facing illumination vs. perimeter occluded from illumi-
nation from region

o degree to which perimeter borders other regions
e Value-based region properties:

o Properties which can be computed for an entire area or along the
perimeter

- mean/median

- measure of variability (e.g., standard deviation, entropy)

(1, 12, 16, 19] ana Section 2.3.1 discuss how some of these region properties
can be computed.

2.2.2.4 Local Region Properties

Region properties describe contiguous parts of the image which are similar
in some respect (e.g., bright regions ). Local region properties allow relationships
among regions and surrounding image areas to specify more complex terrain
feature structure. These local relationships arise because terrain features do not
occur in isolation. Rather, terrain features have functional relationships with
other regions and areas of the image. These functional relationslips specify the
local contextual structure of terrain features relative to other regions, features,
and image areas.

Support areas specify the locations in which surrounding structures are
expected to occur relative to a central region. In the example shown in Figure 2-5,
one functional role of bridges is to link a road across a body of water. Put in
terms of local region properties, bridges are usually surrounded on either side by
water, and land/road surrounds them on either end. In this example, the bridge
is the central region; water and road/land are the surrounding structures which
can be found in support areas.

There are two primary issues which impact the specification of local region
properties: geometric specification of the relationship between a central region
and support area(s) and measurement of support area properties. Using Figure
2-5 to illustrate, there is the need to define the position and shape of the support
areas relative to the central area (bridge), and the support areas need to be
evaluated (e.g., test if they contain water and land/road).

2.2.2.6 Geometric Relationship Between Central Region
and Support Area(s)
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Two techniques have been identified for geometrically specifying the position
of surrounding areas relative to a central region. These are point and perimeter
relationships. Point relationships relate the central region to its surrounding areas
by locating a point in each surrounded area with respect to a point on the central
region (as in Figure 2-5); point relationships are useful for specifying the geometry
of relative position of regions. Perimeter relationships specify surround areas
which closely follow the shape of the central region perimeter; perimeter relation-
ships capture attributes of local shape (e.g, shadow).

Point relationships are described in polar coordinates. Let (¢,,c,) be a point
in the central region (e.g., its centroid) and (s,,s,) a point in the support area
(e.g., the center of a rectangle). As shown in Figure 2-6, the relative geometric
position of these two points can be specified by d, and 9,: d, specifies the
euclidean distance between (c,,c,) and (s,,sy); by, the position of (s7:5,) about

(egr¢y)-

After defining the point relationships, the shape and orientation of the sup-
port area(s) can be further restricted. Since the description of arbitrary support
area shapes is extremely complex, a small set of prototypical shapes can be used
to describe the support areas. For example, Figure 2-7 show three prototypical
support area shapes that were found useful: the rectangle (which is specified by
three parameters), the arc (also specified by three parameters), and the circle
(specified by one parameter). These three support area shapes may be composed
to create more complex support areas. For example, Figure 2-8 shows a complex
support area (shaded) resulting from the intersection of an arc and a rectangle.

Figure 2-9 demonstrates how local region properties for a bridge terrain
feature determine the point relationships and support area shepe and orientations.
The central region is the ‘‘bridge” region. This region has length {, width w, a
centroid and two endpoints. The water and road/land support areas have been
specified using rectangles. Water is expected to be on ‘‘both sides’” of a bridge and
road/land occur on ‘‘both ends” of a bridge. This cau be seen by the point rela-
tionships between the central bridge region and the supporting areas. For exam-
ple, the point relationship between the bridge and the top water support area has
length 1.1(w) and it is perpendicular to the main axis of the bridge region. The
shape of this water support region is specified by constants multiplied by central
bridge region properties: the rectangle bounding the top water support region has
height .9(w) and length .8({/). The definition of local region properties for other
terrain features is analogous.

The support area shapes used for point relationships cannot express all local
region properties. Perimeter relationships specify surround areas which closely fol-
low the shape of the central region perimeter. These relationships can specify sup-
port areas which are highly related to the boundary structure of the central region
(e.g., shadow).

Figure 2-10 shows how perimeter relationships are defined by three parame-
ters: band width, region band separation, and a subset of the central region per-
imeter. Band width specifies the width of the support region. The region band
separation specifies the distance of the support region from the perimeter of the
central region. If the entire central region perimeter shown in Figure 2-10 is used,
the resulting support region would surround the central region (as shown by the
shaded and hatched areas). The third parameter when defining perimeter
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Figure 2-8: Complex Support Area
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relationships allows a smaller subset of the central region perimeter to restrict the
final support area configuration. For example, assume that the central region
shown in Figure 2-10 is a forest region with the source of illumination as indi-
cated. It could be expected that this forest would cast a shadow which closely fol-
lows the central region perimeter farthest from the illumination. This support
area (the hatched area in Figure 2-10) can then be created by restricting the per-
imeter relationship to that part of the central region perimeter which is hidden
from the source of illumination by the area of the central region. When the cen-
tral region perimeter has concavities and the band width and region band separa-
tion are sufficiently large, it is possible that the resulting support area will overlap
the central region; if this is not desired, mutual exclusicn may be enforced by
eliminating portions of the support area which overlap the central region.

2.2.2.8 Measurement of Support Area Properties

A support area specifies the location in which a surrounding structure is
expected to occur relative to a central region. Expected structures in these support
areas may be terrain features (e.g., water, road, land), structural clues afforded via
the imaging process (e.g., shadows), or other structures which locally relate to cen-
tral terrain feature regions.

In order to determine whether the support area contains the expected struc-
tures, properties of the support area must be measured and evaluated. The extent
to which support areas contain expected structures can be used to evaluate the
central region hypothesis. If a support area provides suitable evidence that the
expected structure is contained within it, the support area is considered to uphoid
the conjecture of the central region hypothesis.

A good way to evaluate search regions for expected structures is to create an
independent routine for each structure which can be expected to occur within a
support area. Each routine is responsible for evaluating whether the expected
structure is contained within a support area; it returns its evaluation as a measure
of belief (e.g., ‘‘strongly indicative evidence of structure presence”, ‘‘no indication
of presence’’). The form of each routine depends upon what structure is being
evaluated. If there is a routine EVAL-SEARCH-AREA-FOR-WATER, it may
choose to examine the dimness and homogeneity of the underlying image (since
these are visible properties of water in SAR imagery). Rather than examine
image-level properties, the routine can examine active hypotheses in the search
area which support or deny the existence of the expected structure. Alternatively,
when map information is available, this routine can use the support areas to form
map database queries in order to evaluate the search area.

2.2.2.7 Inter-Object Properties

Though local region properties capture an important aspect of terrain
features, more global terrain context captures an essential aspect of terrain feature
representation. Terrain features do not occur in isolation. Rather, each terrain
feature affects and is affected by other terrain features with which it is function-
ally related. For example, a bridge exists only to continue portions of a road net-
work over otherwise intractable terrain, road networks connect destinations (e.g.,
buildings), vehicles travel on roads, roads cannot travel directly up steep
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mountains, etc. These more global inter-object properties embody an important
aspect of terrain features which is not described by local region properties. These
properties are described at the terrain feature level, so they are particularly suited
for answering user queries and the construction of maps.

2.2.2.8 Terrain Recognition using the Hierarchical
Terrain Feature Representation

The previous subsection presented a structural hierarchy for the representa-
tion of terrain features. We now discuss how this hierarchy may be used to recog-
nize terrain features.

Bottom-up terrain information provides object hypotheses and it is generally
required to start the interpretation process. Conversely, top-down terrain informa-
tion allows terrain feature knowledge and context to guide the interpretation pro-
cess, Rather than advocate the use of one over the other, it is important to recog-
nize that both bottom-up and top-down terrain information is generally required
to provide reliable terrain feature extraction. Therefore, the terrain feature
representation should integrate both sources of information.

Figure 2-11 shows how the hierarchical terrain representation may be used
to recognize terrain features; bottom-up and top-down portions of the processing
have been identified. Bottom-up mapping from image structures to terrain
feature models produces initial terrain feature hypotheses. Top-down information
is then used to evaluate and rank these hypotheses and integrate information
across terrain feature types. The levels in the structural hierarchy which were dis-
cussed above have been labelled in Figure 2-11. The next sections discuss how
these bottom-up and top-down processes are performed within the conceptual sys-
tem architecture presented in Section 2.1.

2.2.2.9 Bottom-Up Terrain Modeling: Mapping from
Image Structures to Terrain Feature Models

Initially, let us assume that there are no terrain hypotheses and the system
is given an input SAR image. Though initial hypotheses may be provided using a
map database or user-specified context, this only makes the problem more tract-
able. We assume that the first step in the interpretation process must extract
more abstract image structures and map them to terrain models to provide initial
terrain feature hypotheses.

The Perceptual Grouper extracts image structures and region properties (as
shown in Figure 2-11 and discussed in the previous section) and places these image
structures into the Image Structure Data Base (ISDB). As shown in Figure 2-11,
the Terrain Feature Modeler uses the bottom-up portion of terrain models to map
these image structures to modeis in order to form terrain hypotheses.

Figure 2-12 shows an example mapping from image structures to terrain
feature models. The trees in a forest cast alternating shadows and high returns
for unoccluded tree leaves; this results in a dappled texture in forest regions. The
frequency of this texture can be modelled using sensor platform position, resolu-
tion, and bounded tree size; thus thresholded bandwidth limited SAR imagery
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provides texture elements which are highly associated with forest texture regions.
Dense patches of these texture elements occur in forest regions. Since there is a
minimum size on a forest region, medium and large dense bandwidth texture
regions are thus suggestive of forest regions.

Continuing the examples shown in Figure 2-12, bridges tend to have many
reflective dihedrals, so their return (i.e., brightness) from SAR sensors is generally
very high. Bridges are also generally long and thin since the width of roads is gen-
erally far less than the spanned distance; bridges thus appear as long, bright
regions. Additional constraints are available (e.g., bridges have bounded width,
they are generally straight). These long bright regions also occur at the leading
edge of forests (i.e., the side of a forest region which faces the illumination); this
occurs because of the increased leaf surface and increased presence of dihedrals at
the leading edges of a forest. Thus, long bright regions are suggestive of both
forest leading edges and bridges. As shown in Figure 2-11, local region properties
and inter-object properties can distinguish the most plausible hypotheses.

Bottom-up models of terrain features are built up in an analogous fashion
for each terrain feature of interest.

2.2.2.10 Top-Down Terrain Modelling: Using the Terrain Model
to Evaluate Terrain Hypotheses

As has been discussed, one role of the Terrain Feature Modeler is to evaluate
terrain hypotheses selected by the Hypothesis Manager. This requires that top-
down terrain structure information be used to determine the extent to which the
contextual presentation of the terrain feature is consistent with the terrain
hypothesis. As shown in Figure 2-11, this can be done using the local region and
inter-object properties of terrain feature models.

The previous section described how local support regions may be constructed
in order to specify local support areas and local region properties. Figure 2-9 pro-
vides an example of a local support area structure for a bridge terrain feature.
Figure 2-10 illustrates a shadow support area for an example forest terrain
feature. The extent to which expected structures appear in these support areas
(e-g., water, road/land, trailing shadow) determines the confidence and supporting
evidence underlying the terrain hypothesis.

The Modele: must perform three tasks in order to use local region properties
to evaluate a terrain hypothesis. First, it must define the support areas for that
terrain hypothesis (e.g., for a bridge, the water and road/land support areas).
Second, it must evaluate the extent to which the expected structures appear in the
support areas (e.g., to what extent does image, current hypothesis, and/or map
database information support the conclusion that water is contained within the
water support area). The third and final step requires that the evaluation of indi-
vidual support areas be combined into an overall evaluation which specifies the
plausibility of the central terrain feature hypothesis. As previously discussed, the
Modeler returns this overall evaluation to the Hypothesis Manager which is
responsible for hypothesis reasoning and maintenance.

Combining individual support area evaluations into an overall central ter-
rain feature evaluation leads to some interesting observations. All support areas
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do not contribute equally to the overall evaluation of the central terrain
hypothesis. Using a bridge as an example, if one water area and both road/land
support areas evaluated well (i.e., there is strong confidence that they contain
water and road/land) and the remaining water support area shows no evidence of
water, this does not translate into a ‘75 confidence” in the bridge hypothesis;
instead, the failure to find supporting evidence of water in that single support
area is sufficicuc evidence to seriously question the validity of the central terrain
hypothesis. In other words, when combining support area evaluations, the
Modeler must take into account the structural importance of each support area to
the central terrain hypothesis. Each terrain feature must thus have a unique com-
bination function which integrates individual support area evaluations into an
overall central region hypothesis evaluation.

The top-down evaluation of local region properties attempts to eliminate
terrain hypotheses which are not locally plausible. Because locally plausible terrain
hypotheses may lack more global consistency, inter-object properties can be used
to further evaluate current terrain hypotheses. As shown in Figure 2-11, this can
involve the creation of more abstract terrain features (e.g., road networks) which
are composed of terrain feature subparts (e.g., bridges and roads); consistency is
then verified within this more abstract terrain feature structure.

2.2.3 Hypothesis Manager

As terrain recognition proceeds, terrain hypotheses are created. Initial
hypotheses are subject to noise and error, so subsequent reasoning is required to
achieve reliable terrain feature recognition. The Hypothesis Manager is responsi-
ble for selecting, evaluating, and adjusting terrain hypotheses which are main-
tained in the Terrain Hypothesis Data Base (THDB). Two issues are particularly
relevant to the Hypothesis Manager: the representation of terrain hypothesis
confidences, and, the methodology of hypothesis reasoning.

A well-known problem in early Al systems arose from the use of numeric
confidences which had no well-known meaning or interpretation (2, 22]. For
example, MYCIN expressed confidences in medical diagnoses as a numeric quan-
tity; +0.5 expressed positive belief in a diagnosis, while -0.95 expressed a strong
disbelief in a diagnosis. These numeric confidences have several problems. First,
the meaning of each numeric ronfidence has no specific meaning nor interpreta-
tion; for example, does 0.75 mean that the system is very certain? Second, it is
difficult to express the usefulness of relative confidences when the range of numeric
confidences exceeds the number of discretely meaningful confidence classes; for
example, does a hypothesis with belief 0.75 express more confidence than a
hypothesis with belief 0.74? Third, because of the previous two problems, it is
difficult to derive meaningful combination functions which are based on these
numeric confidences. This last difficuity can be overcome in part using Bayesian
approaches (e.g., as done in (3], though some argue that statistical properties do
not strictly hold for Al problems).

An alternative specification of hypothesis confidences uses discrete (‘‘fuzzy’’)

classes [22]. Each ‘‘fuzzy” class expresses confidence as a discrete semantic unit.
An example of a fuzzy confidence set with nine classes might be:
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e DEFINITELY SO (POSITIVE AXIOM)

« STRONGLY INDICATIVE

e INDICATIVE

« WEAKLY INDICATIVE

 UNDECIDED

e WEAKLY NOT INDICATIVE

e NOT INDICATIVE

e STRONGLY NOT INDICATIVE

e DEFINITELY NOT (NEGATIVE AXIOM)

These fuzzy sets provide better reasoning abilities and they more accurately
express the meaning underlying hypothesis confidences [22]. Combination rules
are also more straightforward when using these fuzzy sets. For example, several
WEAK INDICATIONs of a particular hypothesis may allow that hypothesis’
confidence to be upgraded to INDICATIVE. These fuzzy approaches also make
hypothesis reasorning less opaque and more available to human analysis and
understanding. Because of these and other reasons, it seems that discrete
confidence classes and fuzzy set theory provide a good representation for terrain
hypothesis confidences.

The Hypothesis Manager reasons about terrain hypotheses in order to drive
the system to reliable final hypotheses. The Manager is responsible for selecting,
evaluating, and adjusting terrain hypotheses. The method by which the Manager
per™ 'ms this reasoning critically affects the successful and reliable extraction of
te~r..n features.

Figure 2-13 shows how hypothesis evaluation and reasoning can be per-
formed by the Hypothesis Manager. The Manager determines whether the terrain
recognition task is completed by examining whether conflicts among competing
hypotheses have been resolved and the current hypotheses have sufficiently high
confidence. If terrain features do not overlap (i.e., if they are spatially mutually
exclusive), conflicts can be simply detected when more than one hypothesis
describes a given image position. If there is not mutual exclusion among terrain
features of ir*~rest, 2 more explicit definition of competing hypotheses is required
fag, :xplir--. defining which hypotheses are mutually exclusive and which are
wubually - ompatible).

As shown in Figure 2-13, when conflicts have not been eliminated or
confidences are not high, the manager then selects a central terrain feature
hypothesis (F' 1 ‘> spatially reason about. A good selection strategy is to select
the best (i.  .aost confident) hypothesis. This best-first strategy supports
island-driving which allows hypotheses with high certainty (i.e., ‘‘islands’™) to
“‘drive” subsequent hypothesis reasoning [2]. Care must be taken with such
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strategies that the same hypothesis is not repeatedly selected (e.g., after selection,
a hypothesis cannot be reselected for a given period). Alternative hypothesis selec-
tion strategies can be employed [2].

After the central terrain feature hypothesis H; has been selected, the
Manager needs to determine whether the hypothesis is well-founded and consistent
with the terrain model. Since this requires terrain-specific knowledge, the Terrain
Feature Modeler must be queried by the Manager to answer these questions. As
discussed earlier, the Modeler can evaluate a terrain hypothesis by examining the
consistency of Local Region Properties and Inter-Object Properties with the
hypothesis’ terrain model. The Modeler then returns this hypothesis evaluation to
the Manager.

As shown in Figure 2-13, if the Modeler finds that the central terrain
hypothesis H; is not sufficiently consistent with the terrain feature model, then
the Manager should lower the confidence in H;. Conversely, if the Modeler finds
H; is consistent with its terrain model, the Manager can raise the confidence in
supporting terrain hypotheses. For example, if a bridge hypothesis is supported
by the existence of surrounding structures (e.g., water and road/land), then the
confidence in those surrounding structures may be raised (i.e., the confidence in
water and road/land can be increased). Care must be taken that the bypothesis
selection algorithms and the raising/lowering of confidences does not lead to hys-
teresis or unstable confidence reasonings.

The Manager cycles through the hypothesis evaluation and reasoning cycle
until it determines that the terrain recognition task has br.n completed; the
Manager then notifies the System Controller that it considers the recognition task
completed. At this time, the current terrain hypotheses represent the final terrain
features recognized by the ATFE system, and the System Controller can output
these identified terrain features to the Query Manager.

2.2.4 System Controller

As mentioned earlier, the System Controller has two primary tasks: it inter-
faces query requests and it coordinates system activities (see Figure 2-1). Detailed
discussion of system control is more appropriate for the next phase of research,
though we have identified some techniques and observations which are relevant.

An important aspect of the architecture is that control can be largely decen-
tralized to support distributed processing. For example, the system could be
implemented as a segmented blackboard system with independent knowledge
sources that autonomously read from and post to blackboards {2]. Implemented in
such a way, the Terrain Feature Modeler, Perceptual Grouper, and Hypothesis
Manager routines operate as Knowledge Sources which independently gather infor-
mation; these knowledge sources then asynchronously post events and information
to other knowledge sources via a blackboard. Using such a control architecture,
the System Controller monitors blackboard posting and knowledge source process-
ing in order to determine how to best allocate resources by coordinating the multi-
ple parallel system activities. Work on these blackboard architectures has demon-

Ttrated their power and it has developed effective controller designs and strategies
25).
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Independent of specific control architectures, the efficient allocation of com-
utational resources is an interesting aspect of the controller. Meta-knowledge
g.e., knowledge about how the system operates and what costs are assigned to
tasks) can be used to establish global strategies, intermediate processing results
can be used to provide a focus of attention (e.g., island-driving [2]), and user
queries can specify constraints which determine a more efficient system strategy
(e-g., “I'm only interested in bridges').

2.3 RECOGNITION ALGORITHMS

This section describes algorithms which were developed and used to demon-
strate the Phase II technical approach on bridge and terrain features in SAR
irnagery. Section 3 describes the application of these algorithms in order to
automatically extract terrain features.

2.3.1 Perceptual Grouper

2.3.1.1 Image Feature Properties

Many low-level computer vision and image processing techniques, features,
and extraction algorithms have been developed. For example, Canny edges (5],
lines [12]}, homogeneous intensity regions [19], and other techniques for low-level
image feature extraction have been iinplemented in the ADS Powervision environ-
ment [1, 14]. Rather than describe these published algorithms, we describe two
new algorithms that were developed as part of the Phase II effort to determine
BRIGHT and ROUGHLY TEXTURED areas in imagery.

2.3.1.2 BRIGHT Image Feature Property

When analyzing imagery, terrain features will often be described as
‘“‘bright'’. In SAR imagery, these bright image areas correspond to high radar sig-
nal returns.

Figure 2-14 shows one approach for defining image brightness which divides
intensity into fixed ranges. For example, BRIGHT cou!d be.defined as the upper
30% of the intensity range. This is a good approach when SAR intensity calibra-
tion is always the same and the brightness range bears a fixed, absolute relation-
ship to the imagery. In general, however, this is not the case. Sensor fluctuation,
changes in calibration, gross environmental changes (e.g., radar return changing
after a rainstorm or morning dew), and other effects make this approach brittle
and inaccurate.

An alternative way of determining BRIGHT image areas is suggested by the
human visual system. It has been found that the perception of brightness
depends upon the local rates of intensity variation {10]. Figure 2-15 demonstrates
how this principle results in a well-known optical illusion. Though the two smal-
lest squares are identical in gray value, the square within the darker background
is perceived to Le brighter than the square within the lighter background. This
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effect arises from the larger intensity discontinuity resulting from the darker back-

ground. This perceptual phenomena suggests that the determination of BRIGHT
image regions should calibrate at image areas where large discontinuities in inten-
sity occur.

Figure 2-16 illustrates the perceptual brightness algorithm which was
developed to discriminate BRIGHT image areas. The algorithm calibrates by exa-
mining intensity changes at image areas where large intensity discontinuities
occur. This calibration provides the range of intensities which are considered
bright, and this range can be used to threshold the original image to provide a
BRIGHT binary image (i.e., bright pixels are 1; others are 0). A connected com-
ponents algorithm [1, 12| may then be applied to this binary image to produce
aggregated pixel regions.

Let us specify the BRIGHT range as (|I],{I]). The top of the BRIGHT
range [I]is assumed to be the greatest image intensity value. The task is then to
find the lower bound |I]of the BRIGHT range.

The gradient magnitude of image intensity specifies local intensity discon-
tinuitizs which are used to specify the BRIGHT intensity range. As shown in Fig-
ure 2-16, the first step in the algorithm _\7nm.pu.t.es_'.he gradient magnitude. Gra-
dient magnitude is given by M(z,y) = V Az? + Ay?. Many techniques for com-
puting the gradient may be used (e.g., Roberts, Prewitt, Sobel) [1, 12, 13|, though
some techniques have better immunity to noise and spatial aliasing [13]. In the
experiments presented in Section 3, the derivatives were computed as
Az =I(z,y) - I(z — 1,y) and Ay =I(z,y) - I(z,y — 1). Good results were
obtained even though this highly local method of computing image derivatives is

particularly susceptible to noise and aliasing effects; alternative techniques may be
used (e.g., Prewitt).

The bottom of Figure 2-16 shows a characteristic histogram of gradient
magnitude. The rapidly decreasing occurrence of large gradients arises from the
geometry of an image [12]. For example, the greatest number of large gradients
occurs when the image is a checkerboard pattern of minimum and maximum
intensity values. Quite the opposite effect is found in natural images in which the
majority of image pixels are contained within fairly homogeneous image regions;
this results in the characteristic histogram shown in Figure 2-16.

The perceptual brightness algorithm seeks to calibrate brightness at areas in
the image which have large intensity discontinuities. This requires that all image
areas whose gradient magnitude exceeds some threshold |M] be identified as cali-
bration points. The threshold [MJ cannot be directly specified without suffering
from the same problems which occur for the fixed range technique shown in Figure
2-14. Instead, the gradient threshold [M | can be simply determined by specifying
the number of desired calibration points and using the gradient histogram to
determine |M]. The perceptual brightness algorithm assumes that some fixed
small percentage of the image is used to calibrate brightness; a percentage of 0.1%
was used, though as will be described, the exact percentage is not particularly
important. The total mass under the histogram shown in Figure 2-16 is the
number of pixels contained within the image. All image pixels whose gradient
magnitude exceed 0.1% of mass (this cutoff [M ]is shown in Figure 2-16) are used
to calibrate brightness. That is, the gradient threshold [M is defined as the
smallest gradient magnitude among the largest 0.1% of pixel gradients.
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At this poiat, the calibration points have been identified (shown in Figure
2-18 as image C). Figure 2-17 shows the calibration points (in red) selected in a
portion of a SAR image; 0.1% of mass was used. At this point, it becomes fairly
evident why the technique is fairly insensitive to change in the mass percentage
cutoff. Suppose, for example, that a five-fold increase in the mass cutoff was used
(i.e., from 0.1% to 0.5%). This would result in a five-fold increase in the number
of calibration points. As is evident from Figure 2-17, this would merely add addi-
tional calibration points along the same intensity boundaries of the objects.
Though the algorithm is fairly insensitive to changes of this magnitude, it is clear
that changes of many orders of magnitude would undermine the determination of
calibration points (e.g., if 10% of mass was used). The main point to be made is
that this mass cutoff may be empirically determined and applied to a large set of
similar imagery while still producing comparable results. This stability is not
afforded by the fixed range approach (e.g., as shown in Figure 2-14).

The final step of the perceptual brightness algorithm must examine the
underlying image intensities at the calibration points in order to determine the
bottom of the BRIGHT range |I]. As can be seen from Figure 2-17, the calibra-
tion points occur at the boundary of bright regions. Many techniques may be
used to determine |I].

In one approach, the bottom of the bright range may be de(&n,ed as the aver-
age intensity among all of the calibration points; that is, |7} = =25 where

[
C(z,y) is a calibration point and n_ is the total number of calibration points.
Because the determination of spatial derivatives can affect the pixel registration
between the gradient image and the intensity image (due to aliasing and the use
of larger convolution masks), this approach can sometimes sample at slightly dis-
placed image locations. The use of the average somewhat overcomes this effect;
the median performs better than the mean in this respect.

An alternative technique was used to produce the results described in Sec-
tion 3.3. Potential registration prohlems were overcome by processing the inten-
sity image with a 3x3 maximum filter; that is, each pixel value is replaced by the
maximum value within a 3x3 window centered at that pixel. This maximum
filtered image is then measured at the calibration points. The bottom range of
BRIGHT was then defined as the smallest maximum filtered image value sampled
among all the calibration points. That is, |[I|= |F(z,y) | Cls, jwhere F(z,y)is
the maximum filtered image which is sampled at every calibration point C(z,y).
This approach produced good results in the SAR imagery we examined.

Once the BRIGHT intensity range (|I],[I]) is determined, it may be used
to threshold the.original intensity image. A connected components algorithm
(1,12] may then be applied to this BRIGHT binary image to produce BRIGHT
image regions.

The form of the perceptual brightness algorithm described here assumes that
a global intensity range can adequately describe bright image areas. This assumes
constant illumination, which may not always occur. Additionally, this approach
allows large, high contrast objects to dominate smaller, lower contrast objects in
the image. Because of these and other reasons, the gradient histogram and subse-
quent image sampling can be produced using a smaller image window (as in the
human visual system [190]).
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2.3.1.3 ROUGHLY TEXTURED Image Feature Property

Area terrain features often possess a roughly textured pattern. Texture is
an important and complicated area of research within computer vision [1, 16}, so
we restrict ourselves to determining image areas which contain a simple mottled
texture, The application of this algorithm to a SAR image in order to discrim-
inate forest terrain is shown and described in Section 2.2.

Figure 2-18 shows a bandpass frequency-based approach for discriniinating
simple mottled (rough) texture in imagery. Many techniques may be used to
create bandpass images (e.g., fourier analysis, optimal filters, ete.) [1, 16, 21]. The
approach shown in Section 3.2 used the difference of two low-pass images which
were created by convolving the original image with two-dimensional gaussian
masks of differing width 0. An equivalent and more efficient approach results
from composing the two gaussian masks into a single convolution mask and con-
volving this with the original image [1, 21). Additional efficiencies can be
obtained by noting that these masks are separable, and hence, the bandpass can
be produced by sequentially convolving two one-dimensional convolution masks
over the original image [4].

Mottled texture in the image area produces non-zero values in the bandpass
image. Positive values in the bandpass image occur where bright texture within
the bandpass occur. Similarly, negative values in the bandpass occur where dim
texture within the bandpass occur. As shown in Figure 2-18, the bandpass is
thresholded into two binary images which specify darker and brighter portions of
the bandpass image.

A distinguishing characteristic of mottled (rough) texture is that component
texture elements are fairly bloblike. It is thus desirable to eliminate adjacent pixel
clusters (i.e., blobs) which are straight. Additionally, very small blobs may be
eliminated. (Note that this stage of the algorithm shifts from image feature pro-
perties to description of region properties in order to perform intermediate filter-
ing of pixel candidates; the final output, however, is an image which describes
image feature properties.) This step of the algorithm aggregates pixels into
regions, filtering regions which are straight or very small, and then projects the
remaining regions back into a binary image. The projection back into a binary
image facilitates the next stage of the algorithm.

Mottled texture contains alternating patches of bright and dark spots.
Several approaches may be used to aggregate these blobs into a single entity (e.g.,
density metrics, search-based approaches, region growing). The technique which is
shown in Section 3.2 expands individual texture blobs by two pixels which causes
them to merge into a larger mottled texture blob. This region growing can be
performed by computing a chamfer |1} and thresholding at the expansion distance.
As shown in Figure 2-18, the binary thresholded/filtered bandpass images are
merged to pioduce a binary image containing individual bright and dim texture
elements. Adjacent texture elements are merged by growing this binary image by
two pixels. The resulting image is a binary image which identifies roughly tex-
tured areas in the original image.
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Fignre 2-18: Algorithm for Extracting ROUGHLY TEXTURED Image Areas
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2.3.1.4 ARegion Properties

Many techniques have been developed for the description of region proper-
ties. Many of these descriptive attributes are directly provided by the Powervi-
sion environment (e.g., perimeter points and length, ..ea points and statistics,
bordering regions). Other region descriptions can be trivially computed using
these existing attributes (e.g., cohesiveness [1, 19}, number and area of holes (i.e.,
other regions within the outer rerimeter) {19], perimeter statistics). Here we
describe some algorithms which were developed for this Phase II effort in order to
compute region properties; a description of other region attributes and their com-
putation may be found in (1, 12, 14, 16, 19).

2.3.1.6 LINE, ENDPOINT, WIDTH, LENGTH,
and STRAIGHTNESS Region Properties

Orientation, straightness, width are among the most useful region proper-
ties. As in Section 2.2.2, these descriptions provide a local coordinate system
which is useful for relating regions to terrain features. For example, bridge terrain
features usually appear LONG and STRAIGHT. This section describes an
efficient way to compute region properties described in an earlier paper {12].

The computation described below to fit a line to a region also provides other
useful region descriptions which are based upon statistical properties of region
pixel distributions. A technique based upon the principal axis is used.

Specifically, we describe a technique for determining the best-fit LINE and END-
POINTS, LENGTH, WIDTH, and STRAIGHTNESS of a region. The partial

statistics derived from region pixels can be computed in a single pass over the
image; region descriptions can then be derived with final computations on these
partial statistics. A fuller discussion of the principal axis computation may be
found in (1, 21].
Referring to Figure 2-19, the following steps are used to determine the
stated region descriptions:
1. Accumulate region statistics
2. Compute region CENTROID (¢, ,c,) and the scatter matrix
3. Compute eigenvalues V, and V,
4. Compute principal axis ORIENTATION @
5. Fit a line to the region with ENDPOINTS (p,,p,)
6. Compute the LENGTH ! of the region

7. Compute the WIDTH w of the region

2-40




.
P R
R
e

................

length = [=f(pl,p2)

Y.
MBR
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Region statistics are accumulated in order to compute the scatter matrix
and determine the centroid for a region. The following computes the centroid:

XZR *
€
€ = — : (2.1)
Y
- YeR v

¢, = . (2.2)

where R is the region being described, (c,,c,) is the ceptroid and n is the number
of pixels(area) in the region; for the scatter matrix [.z c
defined as

the elements may be

= Yz? - i%z_ﬁ (2.3)

A
b =Yazy — —2‘—:%“—!’— (2.4)

- Y0, )2
¢ =2y - (—L-r%L (2.5)
As described in [12], this formulation allows the statistics to be efficiently
computed in a_single pass over the image. Thus, the following sums must be
accumulated: Yz, Ly, 2z 2 and zy As will be discussed, the upright

minimum boundlng rectangle (MBR) is used to fit a line to the region, where

MBR = [(l.zJ’l.yJ )s ([z]’[y])]

so these minimum and maximum values also need to be maintained. Once these
sums are accumulated, the centroid and scatter matrix may be computed.

Numeric capacxty is important when accumulating the statistics, expecially
sums of the square of i image coordinates, and for large regions, these numbers can
sometimes cause numeric overflow. Though not a serious concern, care should be
taken to ensure that partial sums never exceed the representation. This potential
problem can usually be eliminated by moving the origin to the center of the image
or region, scaling down all pixel coordinates, restricting the number of pixels sam-
pled from the region, or simply using large numeric representations.

The principal axis which describes the aggregate of pixels within a region
can be determined from the elgenvaluw which can be derived from the scatter
matrix. The characteristic equation of the scatter matrix is

52 G)rG)=F -
be) Wl "W)™ 1 b =N
which can be solved using the quadratic formula

a + c::i:\/(—a—-e:)2 — 4(ac—b?)
2

A less expensive form to compute is
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The solutions to the characteristic equation yield two eigenvalues. The smaller
eigenvalue V, is obtained by subtracting the second term, and the large eigen-
valur V, is obtained by adding the second term. The ORIENTATION of the

prin..pal axis is given by
V, - a
b

where @ and b are scatter matrix values, and V, is the smaller eigenvalue.

0 = arctan

The principal axis § determines the orientation of the line which best fits a
region (in the least-squares sense); the region centroid (¢,,¢,) anchors the position
of that line. The endpoints of the line segment must still be determined.

Conceptually, it is difficult to define where the endpoints of a line fitted to a
region should be placed. A reasonable definition would place the endpoints where
the two region pixels farthest from the centroid project perpendicularly onto the
principal axis. Though intuitive, this solution has problems with irregularly
shaped regions, it is relatively expensive to compute, and it requires an extra pass
through the image (since the projection cannot be done until after the principal
axis been determined).

As illustrated by the ENDPOINTS (p,,p,) in Figure 2-19, a simpler way to
compute line endpoints intersects the principal axis line with the upright
minimum bounding rectangle (MBR). As discussed, the MBR can be easily deter-
mined when the statistics are accumulated. This method is efficient because
defining the bounding box and intersecting it with the principal axis line is com-
putationally simple. This technique causes some anomalies (e.g., rotating a non-
circular region in the plane changes the endpoints somewhat), but it works
extremely well for elongated support regions. Because it is not meaningful to fit a
line to an irregular region (as when the ratio of the eigenvalues is large), unusual
fitting of lines to highly irregular regions is not a serious concern.

The best-fit line fit to the region simply provides the length of the region.
That is, region LENGTH may be defined as | = \/(z,—2,)* + (y,—y,)? where
zy, y; and z,,y, are the coordinates of the endpoints p; and p,.

Determining region width can be a bit more problematic. One possible
approach determines the farthest region pixels from the principle axis. This
approach is computationally expensive since it must determine the distance of
region pixels from the principal axis. Further, even a small aberration in the per-
imeter of a region can cause a large change in assigned region width.

By noting that the eigenvalues measure the distribution of region pixels
about the principal and minor axes, they can be used to provide an inexpensive

VY,
Vv

way to determine region width. That is, w =1 where w is region
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WIDTH, V, and V| are the eigenvalues, and ! is the region LENGTH as deter-
mined by the ENDPOINTS. In addition to the computational simplicity of this
approach, it is insensitive to minor variations or irregularities in the region perim-
eter.

When region LENGTH and WIDTH are available, region STRAIGHTNESS
may be defined by their ratio. That is, s = Y where s is the measure of

STRAIGHTNESS, w is region WIDTH, and [ is region LENGTH. Note that
0<z <1 Ass — 0, a region becomes more elongated. Conversely, as s —1a
region becomes more spherical.

2.3.1.6 ILLUMINATED PERIMETER Region Property

When referring to the perimeter of a region, it is often quite useful to refer
to the direction of illumination. For example, for a forest terrain feature in a
SAR image, the perimeter which faces the illumination usually has a white band;
similarly, the shadow cast by the forest region usually results in a wide black
band on the nonilluminated trailing perimeter. Section 3.2 demonstrates how
these white and dark bands, in conjunction with a concept of (non)illuminated
perimeter, can be used to more reliably determine the location of forest terrain
features. This section describes how the illuminated and nonilluminated portions
of a region perimeter may be deterrmined.

It is assumed that the perimeter for a region is maintained as a circular list
of perimeter points; this is the representation afforded by Powervision (see Appen-
dix B). The task is then to determine, for each point in the perimeter, whether
that perimeter point faces towards or away from the illumination. The algo-
rithms discussed here first find a region perimeter point which is known to face
the illumination source. The algorithmns then walk along the perimeter from the
starting point marking the visibility of each perimeter point. As the algorithm
walks along the perimeter, it ex~- ines the relationship between the orientation of
the local perimeter relative t. t... source of illumination in order to determine
whether the current perimeter is illuminated. The algorithms terminate when the
algorithm returns to the initial perimeter position.

Many SAR images. are synthesized according to the convention that the
radar) illumination originates vertically from the top to the bottom of the image
as shown in Figure 2-20). In this case, there is a very simple algorithm for deter-
mining which portions of the region perimeter face the illumination source.

As shown in Figure 2-20, the starting perimeter point is selected as the top-
most point of the region (i.e.,, P(]|z},y))._ Since the illumination is known o ori-
ginate from above, this ensures that Ps z],y) faces the illumination source; a tog-
gle variable V is thus initially set to tlluminated. The algorithm walks along the
perimeter from this starting point P([x] ,¢). As shown in Figure 2-20, let us
assume that the perimeter walk initially moves from left to right (i.e., increasing
in column values). Perimeter positions are marked as “‘illuminated” until the
direction of the walk changes (e.g., the direction of the walk changes from left-
right to right—left?. Perimeter points along the walk are subsequently marked as
“not illuminated” until the direction of the walk changes again. This toggling
continues as the walk continues and the direction of the walk changes. An exam-
ple result from this algorithm is shown in Figure 2-20.
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When the source of illumination can originate from an arbitrary direction
(i.e., not always from directly above), the above algorithm must be modified. In
this less restricted case, changes in the direction of the walk (as shown in Figure
2-20) can be determined when the tangent of the perimeter crosses the direction of
illumination.

2.3.2 Terrain Object Modeler

Only a subset of image feature and region properties are applicable to any
given terrain feature. For example, LONG, STRAIGHT, BRIGHT regions with
minimum WIDTH are applicable to bridges appearing in SAR imagery (see Sec-
tion 3.3). The Modeler can specify image feature and region properties for each
modelled terrain feature by specifying the relevant parameter ranges. Operation-
ally, the System Controller can use this information to activate routines within
the Perceptual Grouper, or alternatively, the parameters may be used to filter
image structures contained within the ISDB; the two approaches differ primarily
in overall computational effort and control complexity. A filtering approach was
used in the experiments described in Section 3. The filtering of image structures
based on image and region criteria is especially well-supported in the Powervision
environment. This approach is especially useful since extraction routines can pro-
duce false positives which are subsequently filtered; conversely, false negatives
need to be avoided in a filter-based paradigm.

Local Region Properties require search areas to be defined. Search areas can
be specified using the techniques preseuted in Section 2.2.2 and standard computer
graphics techniques (e.g., [8]). The resulting search areas can then be represented
as a graphical object or by using bit planes.

Inter-Object Properties can be represented using a semantic network
representation where terrain feature objects are vertices and inter-object properties
are defined by relational edges [1, 2, 14]. These semantic networks typically
represent spatial relations arnong objects quite coarsely (e.g., bridges CONNECT
roads). Finer resolution in spatial relationships can be obtained by examining ter-
rain feature descriptions at lower levels in the terrain feature structural hierarchy
(i.e., local-region, region, or image feature properties). These semantic networks
can support constraini-based reasoning [2].
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8. DEMONSTRATION OF SAR TERRAIN FEATURE EXTRACTION

K,

3.1 INTRODUCTION Py

A recognition procedure can be thought of as mapping parts of the imagery
to terrain features. It is the task of a recognition pro%:dure to organize the image
into useful image features (e.g., the structural hies:%:h® shown in Figure 2-3).
The recognition procedure has both top-down and bRtom-up processing. These
processes are broken down into several levels of abstracXon; previous sections have
described the architecture and its operation. - :\

This section demonstrates the extraction of forest and bridge terrain features
from SAR imagery using the technical approach and techniques described in Sec-
tion 2. The forest example uses a texture-based technique to extract initial forest
hypotheses; local region properties using perimeter-based search areas are then
used to identify and eliminate false positives. The bridge example uses brightness
to extract initial bridge hypotheses; local region properties using point-based
search areas are then used to eliminate false positives. The road example uses
local extrema preperties to extract thin segments whose colinear properties are
used to build longer and larger road elements. These features were chosen because
they demonstrate the use of a variety of local region properties.

A key aspect of both examples is that bottom-up processing is used to gei-
erate terrain hypotheses and top-down model information is used to eliminate
contextually inconsistent hypotheses. This approach achieves the sensitivity of
bottom-up processing and the robustness of top-down modelling.

3.2 FOREST FINDER

Forested areas in SAR imagery possess distinctive ‘‘texture’” with a trailing
radar shadow and a leading band of high return. As shown in Figure 3-1, the
appearance of forest terrain can be defined using a formative model of the canopy.
The canopy is composed of leaves cn individual trees that when viewed en masse
produces a dappled pattern of high returns (individual trees which give strong
returns) and low returns (where trees cast a radar shadow). This characteristic
rough texture distinguishes it from other terrain features (see Figure 3-2). For
example, the field areas contain small elements (i.e., wheat) which result in higher
spatial frequencies.

The ROUGHLY TEXTURED algorithm described in Section 2.3.1.3 and
region attributes were used to produce initial forest terrain hypotheses. The algo-
rithm for this band-pass (frequency-based) texture metric is shown in Figure 2-18.

Figure 3-2 shows the original SAR image of forested terrain. As shown in
Figure 2-18, a bandpass image is produced using the difference of two low-pass
filtered (LPF) images which differ in their cutoff. Gaussian filters attenuate higher
frequencies, hence, they can be used as low-pass filters [21]. Figure 3-3a shows the
original image convolved with a symmetric gaussian mask with o = 3; Figure 3-3a
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Figure 3-1: Forest Terrain Model. (a) Formative Model, (b) Perimeter-based

Local Region Properties for Forest Terrain Model
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Figure 3-2: Original SAR Imasge of Forested Terrain
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Figure 3-3: Original Immage Convolved with a Gaussian with
(a) =3, and (b) 0 =4
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has a lower frequency cutoff since it uses a gaussian mask with & = 4. The rela-

tionship between the spread of the gaussian & and frequency is discussed by Burt

l[;l] ‘The bandpass image B (shown in Figure 3-4) was obtained by subtracting
igure 3-3a from 3-3b.

Notice in the bandpass image shown in Figure 3-4 that forested image
regions contain a dappled texture composed of large bright and dark blobs. As
shown in Figure 2-18 (described in Section 2.3.1.3), these blobs are the texture ele-
ments (“‘textels”) used to determine ROUGHLY TEXTURED image areas. Thres-
holding the bandpass such that B(z,y) > 0 produces bright blobs (shown in red
in Figure 3-5a); thresholding such that B(z,y) < 0 produces dark blobs (shown
in green in Figure 3-5b). Forest has a rough dappled texture, so component tex-
tels should be blob-like; the textels should not be very small or highly linear. The
textels shown in Figure 3-5 (red and green) thus contain three or more pixels and
they are not very straight (i.e, they have more than a 1:5 width/length ratio).
The rough texture elements (textels) shown in Figure 3-5 have been merged to
form the binary textel image shown in Figure 3-6.

Forested areas are distinguished in Figure 3-6 by a high density of textels.
The final step in the algorithm must aggregate dense textel areas into ROUGHLY
TEXTURED regions. Because rough texture contains blobs alternating from
bright to dark, the textels in a dense region are very close to one another. Dense
textel regions may thus be obtained by growing (i.e., enlarging) textel regions by
one or two pixels; this effectively merges textels together to form ROUGHLY
TEXTURED regions.

Clearly, forest regions have a minimum size. Figure 3-7 shows the
ROUGHLY TEXTURED regions produced by the above process. Small regions
have been eliminated (filtered). Note that in Figure 3-7 the minimum region size
is still quite small in order to avoid excluding actual forest regions.

As shown in Figure 3-7, the ROUGHLY TEXTURED regions contain holes
(i.e., contained regions which are not considered part of the textured regions them-
selves). Figure 3-8 highlights these holes in red. The holes are caused by breaks
in the texture. For forested regions, they identify small breaks and clearings
within the forested areas. These interior regions can be considered terrain features
in their own right (with potential for area limitation use for detecting targets or
other features). Since we are seeking furest terrain, we chose to consider small
clearings part of the forest regions (see Figure 3-9).

Figure 3-9 shows the ROUGHLY TEXTURED regions which are considered
initial forest terrain hypotheses. As discussed in Section 2, top-down models of
forest terrain may now be used to evaluate these hypotheses.

Figure 3-10 shows the perimeter-based local region properties (see Section
2.2.2.5) which can be used to evaluate the initial forest terrain hypotheses shown
in Figure 3-9. The search area labelled R1 is the bright thin leading edge of the
forest. The search area labelled R2 is the dark trailing radar shadow that is cast
by the forest. The direction of illumination and maximum tree height places a
boundary on the width of these support areas.

The local region support areas are shown in Figure 3-10. The leading edge
support areas are outlined in red; the trailing shadow support areas are outlined
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Figure 3-4: Bandpass lmage I3 Obtained by Subtracting Figure 3-3a from 3-3b
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Figure 3-5: Texture Elements Produced by Thresholding Arcas in the Bandpass
Image in Figure 3-4

3-7




Figure 3-6: Rough Texture Elements (Textels) Produced by Merging the Binary
Images Shown in Figure 3-5

Figure 3-7: ROUGHLY TEXTURED Regions (Small Texture Regions
have been I'iltered)
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Figure 3-9: Initial Forest Terrain fypotheses
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Figure 3-10: Local Region Supports for Central Forest Region
Hypotheses (in green)
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in white. The ILLUMINATED PERIMETER algorithm described in Section
'2.3.1.6 was used to determine leading and trailing region perimeters.

Incorrect initial forest hypotheses will lack the bright leading bands and
trailing shadows in the local region support areas. This lack of context is used to
eliminate false positives. Conversely, correct forest hypotheses will receive local
region support. Figure 3-11 zooms in on the search areas which support a central
forest region.

Figure 3-12 shows the final forest hypotheses which were found to possess
local region support. A comparison of Figures 3-9 and 3-12 shows which
hypotheses failed to demonstrate contextual consistency (as determined by search
areas).

It is worthwhile to note that the search areas can be used to improve forest
region discriminatiun. For example, a comparison of the large central forest
region (Figure 3-12) and the original SAR image (Figure 3-2) shows that the
roughly textured region overestimated the forested area; this occurred at the bot-
tom left of the region. By noting where the shadow ends at the left bottomn of the
region, the small oversegmented part of the region can be discarded. Similar tech-
niques can be used to correct minor region boundary misplacements (e.g., at the
top of the large region).

3.3 BRIDGE FINDER

As shown in Figure 3-13, the appearance of bridge terrain features are
predicted using a fcrmative model of bridges. Bridges usually have large radar

returns (froin metal construction and dihedrals), thus they typically appear as
BRIGHT, STRAIGHT regions.

The perceptual brightness algorithm (see Section 2.3.1.2) and region attri-
butes were used to generate initial bridge terrain hypotheses. A familiarity with
the algorithm described in Section 2.3.1.2 is assumed.

Figure 3-14 shows the original SAR image which contains a bridge.
Although bridges are in the higher intensity range of the image, a simple
unguided thresholding will nct isolate the bridge areas. Consider, for example,
the many different images which would have the same intensity distribution as
Figure 3-14. It is clear that a more sophisticated method of determining ‘‘bright”
is required to create bridge hypotheses. In tihe discussion of the perceptual bright-
ness algorithin in Section 2.3.1.2, intensity discontinuities were found to be a good
way to discriminate bright image areas. The perceptual brightness algorithm is
illustrated in Figure 3-15.

As shown in Figure 3-15, the first step in the perceptual brightness algorithm
computes gradient magnitude. Figure 3-16 shows gradient magnitudes in which
rapid intensity discontinuities appear bright and more homogeneous image areas
appear dim. Figure 3-17 shows the characteristic histogram of gradient magni-
tude (scaling the histogram for display has compressed the detail of the higher
gradient magnitude values). As described in Section 2.3.1.2, the upper and lower
boundaries of the BRIGHT intensity range are determined from a small, fixed
number of calibration points. For the results described here, .1% of the image
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Figure 3-11: Magnified View of Central Forest Region Support at
the Center Bottom of Figure 3-10

Figure 3-12: Final Forest Hypotheses which Possess Local Region Support
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Figure 3-13: Bridge Terrain Model. (2) Formative Model, (bj Point-based
Local Region Properties for Bridge Terrain Model
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Figure 3-16: Gradient Magnitudes for linage Shown in IMigure 3-14
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points were used for calibration. A given pixel was chosen as a calibration point
if it was among the largest .19 of gradient magnitudes. In the gradient histo-
gram shown in Figure 3-17, the lowest gradient magnitude among the largest .1%
magnitudes was found to be 45; that is, 99.9% of the gradient values are below
45. As illustrated in Figure 2-16, this threshold value of 45 is used to produce the
calibration points (in red) shown in Figure 3-18; a pixel is red when its gradient
exceeds 45. As described in Section 2.3.1.2, the bottom of the BRIGHT range was
defined as the minimum yalue of all calibration points which were sampled from a
maximum filtered image' (3X3 neighborhood). This calibration procedure deter-
mined that the BRIGHT intensity range is (169, 241).

Figure 3-19 shows BRIGHT image areas in green, blue, and red; a pixel is
considered BRIGHT if its value is within the bright intensity range (169, 241).
Because bridges have a minimum possible size, larger regions (i.e., > 40 pixels) are
shown in blue and red. Eliminating very small regions can greatly decrease com-
putational effort, and this minimum threshold can be simply determined from
platform parameters and an empirical estimate of the smallest realistic bridge size.

Because the width of a bridge is usually far less than its length, bridges
characteristically appear as STRAIGHT regions of high return. Figure 3-19 shows
those BRIGHT regions (in red) which have a width/length ratio less than 1:10;
these regions become the initial bridge hypotheses. A larger width/length ratio
(e.g., 1:4) generates more initial hypotheses and the ratio can be selected based
upon the maximum realistic bridge width/length ratio. In general, it is better to
use a conservative (i.e., larger) ratio to avoid false negatives (i.e., incorrectly
excluding a terrain feature hypothesis).

The red regions in Figure 3-19 are the initial bridge hypotheses. As shown
in Figure 2-11, top-down information in the form of local region properties can be
used to evaluate these hypotheses.

Figure 3-20 shows the point-based local region support areas for two central
bridge hypotheses (shown in green). Water support areas are outlined in white;
road/land support areas are outlined in red. If a central bridge region hypothesis

is well-founded, these search areas should contain expected properties (i.e., water
and road/land).

Though other, more accurate, metrics are possible, the search area properties
were based upon statistical properties. A search area which had intensities with a
small standard deviation and average was considered to have water ‘‘properties.”
Conversely, road/land search area properties were considered present if intensities
in the area had a significant standard deviation and an average in the upper half
of the intensity range. Though these metrics are crude (especially for road/iand),
the next paragraphs describe how they were able to eliminate incorrect initial
hypotheses.

Figure 3-21 shows a zoom-in of local region support areas (see Figure 3-20)
which do not confirm the (incorrect) central bridge hypothesis. Because the central
region in Figure 3-21 (in green) is actually part of an island, and not a bridge, the
leftmost support area (in red) does not contain road/land properties. Instead, this

1 A maximum filter sets each pixel value to the maximum value within a fixed window.
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Figure 3-18: Calibration Points Selected by the Perceptual Brightness
Algorithm
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Figure 3-19: Perceptually BRIGHT Regions (in green, blve, red)
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IFigure 3-20: Local Region Support Areas for Central Bridge
Hypotheses (in green)

Figure 3-21: Zoew-in of Loceal Region Support Areas Which Do Not Conlirm
the (Incorreet) Central Bridge Hypothesis (in green)
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left-most support area contains water. Because this is clearly inconsistent with
the functional use of bridges, this initial bridge hypothesis may be discarded (or
downgraded in confidence).

Figure 3-22 shows a zoom-in of local region support areas which confirm the
(correct) central bridge hypothesis. Because the central region is in fact a bridge,
the support areas display expected properties. That is, the water support areas
$outlined in white) possess properties of imaged water (e.g., the areas are dim and
airly homogeneous). Similarly, the road/land support areas (outlined in red) pos-
sess properties of imaged road/land (e.g., non-homogeneous, presence of moderate
returns). Because the central bridge hypothesis is confirmed by its local support
regions, it is retained as a valid bridge hypothesis.

Figure 3-23 shows the final forest hypothesis which was found to possess
local region support. A comparison between Figures 3-19 (in red) and 3-23 shows
which hypotheses failed to demonstrate contextual consistency (as determined by
search areas).

3.4 ROAD FINDER

The representation of roads differs from those of the other features con-
sidered. Forests and bridges are features described as areas and they are viewed
as individual entities of finite extent. Roads are not “finite’” in the sense that
roads are important because of their ability to link places which are distant from
one another. Roads are generally represented as a network; that is, a structure
consisting of junctions (and ends) linked by uninterrupted (not necessarily
strzight) segments. Our concern in this section is how to recognize and extract
uninterrupted road segments and junctions.

Road segments have characteristic shapes but no single internal cue. In
other words, roads are recognized not because of a specific intensity property but
rather because of the particular shape characteristics associated with a number of
intensity properties.

Our model for road segments (Figure 3-24) recognizes them as thin entities
distinguishable by being either darker or lighter than their surroundings. These
entities are then joined into segments based on grouping considerations. In par-
ticular, we structure the grouping by considering long segments as ‘‘seeds’ for the
grouping process. That is, the grouping process considers longer entities first.
There are good reasons for this. Longer entities have more stable descriptions
based on a greater sample of constituent pixels. These descriptions, when
matched to the road model predictions, are more likely to give a correct
classification as road. Also, for these entities it is easier to measure directionality
of the endpoints, thereby simplifying the search for continuations. Finally, their
descriptions provide clues as to the descriptions of their candidate continuations,
serving themselves as a ‘‘model’ for the continuation entity.

The following description illustrates processing steps as applied to an image
containing a road network (Figure 3-25). In the first step, the imagery is sub-
jected to a band pass filter. The purpose of this filter is to permit the analysis of
the intensity characteristics without assumptions concerning the exact gray levels
at which road segments may be found. The band pass image (Figure 3-26) results
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Figure 3-22: Zoom-in of Local Region Support Arcas Which Confirm
the (Correct) Central Bridge Hypothesis (in green)

IMigure 3-23: Final Bridge Hypothesis Which Possesses Local Region Support
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Figure 3-24: Model of Road Segment Feature
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Figure 3-25: Original SAR Image Which Contains a Road Network




Figure 3-28: Band Pass Image Results
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from the difference of two low-pass filtered versions of the original image. In
effect, this computes a difference of Gaussians (also known as a Generalized Lapla-
cian). In this image, extrema correspond to bright and dark points. The roads
themselves tend to lie along these extrema. However, extrema by themselves are
simply individual points which may form regions whose shape properties are inap-
propriate.

An intelligent thinning mechanism is required to reduce an area type pro-
perty to a linear property. The medial axis transform (MAT) is an algorithm
which converts regions into a network of lines by computing a ‘‘skeleton’ for the
region. The medial axis skeleton corresponds to the set of points which are equal
in distance from the boundary of the region. Each medial axis point is the center
of a maximal circle which fits wholly within the region. Thus each medial axis
point is characterized by its location and radius.

The algorithm for computing the MAT follows this definition. First, the
boundaries of the regions for which the MAT is to be computed are identified (as
a by-product of the connected component algorithm or explicitly by tracking each
contour or even by the simple method of deleting interior points - that is, points
with no neighbors outside the regio:}. Each such boundary point is labeled with

a sero (in addition to its region label) indicating zero distance from the boundary.
A series of operations is then applied simultaneously to all image pixels. At each
iteration, each pixel adjacent to a labeled pixel is itself marked with a label one
higher than that of the adjacent labeled pixel. This parallel propagation of labels
is called the “‘distance transform’’ or ‘‘chamfering’ since the result of the process
is a labeling of all pixels by their distance from the closest boundary point. The
medial axis of any region is the set of pixels witi locally maximal labels in the .
interior of the region. The radius corresponding to the pixel is the label that has
been computed for it.

Now it is clear how road segment candidates can be extracted. These are
the elongated regions of extrema whose medial axes have roughly the same radius
and whosc radius is within the allowable range for roads. Figure 3-27 displays the
medial axes of candidate road segments which will be subjected to further rela-
tional analysis. Tiny stubs (‘‘nubbins’’) have been deleted by a process of shrink-
age at endpoints. The resulting longer segments are shown overlaid on the origi-
nal image and as individal entities in Figure 3-28.

Joining road segment candidates into longer road segments is based on an
analysis of segment-to-segment relationships. This analysis is simplified if each
segment is represented by a straight line. Figure 3-29 is the result of fitting
straight lines to the medial axes. The line fitting (the Ramer algorithm) is adap-
tive; that is, multiple lines are used to represent a single segment if the distance to
the furthest point of the points being fit is above a preset threshold. This may
cause a curved segment to break into a number of fitted line segments. This is
not an error since the processing which caused the curved segment to be extracted
in the first place is not perfect and the breaking o® curved segments at curvature
maxima permits high-level knowledge of collinear’* and adjacency tu coalesce the
line segments. In Figure 3-29, color is used to di” - itiate separate line segments.

Two heuristics operate to join line segmer - grouping by collinearity and

grouping by endpoint adjacency. In the first, segw.ents are linked if they appear
to be part of the same line - that is, their line parameters are approximately
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Figure 3-27: Medial Axes of Candidate Road Segments
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Figure 3-28: Longer Segment Results After Shrinkage
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Figure 3-29: Fitting Straight Lines to the Medial Axes
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oqual.

The other segment joining heuristic is to merge segments whose endpoints
are adjacent (i.e., proximate to one another).

These two heuristics are combined into a single co-extensivity property
which operates over the prototypical support areas shown in Figure 2-7. That is,
a line segment is merged with the current segment if one of its endpoints lies
within the support area and its orientation matches that of the current segment.
There are several parameters to be selected: the shape and size of the support and
the degree of match of the segment orientations. The rule can then be applied
recursively either with constant parameters or with parameters that vary as the
process becomes more stable.

Figure 3-30 shows in color which line segments have merged using a rule
which closes only small gaps and requires a high degree of orientation match.
This application of the rule is followed by a further pass (Figure 3-31) permitting
segments to be joined over longer gaps but still requiring close orientation match.
This result is displayed over the extrema background (in Figure 3-32) to show the
relation of the linked segments to the image as a whole.

3.6 EVALUATIONS AND CONCLUSIONS

The finders developed in the course of this project are examples of a whole
class of feature finders that need to be constructed in order to recognize and
extract typical linear features. In particular, the sponsor has identified the follow- -
ing feature classes as being of significant interest: roads, rivers, bridges, railroads,
powerlines, forest regions, bare fields, and airports. Of these, finders for bridges,
forest, and roads have been built as described above. Testing these finders has
r:wlrcealed both the power of the approach and the direction that future work must
take.

Cur approach exploits the hierarchic nature of the feature models by build-
ing finders that operate at multiple levels of evidence. The Image Understanding
literature has focused on the lower levels of evidence which account for the local
properties of the pixels and regions which constitute the feature. Numerous
approaches for recognition are based on the ability of algorithms to function well
at these lower levels. However, these algorithms tended to fail when confronted
by the variability of real world imagery. The examples we have chosen to imple-
ment show how the introduction of higher level knowledge is valuable in feature
recognition by guiding the lower level algorithms and by introducing the available
context as a source of additional evidence. The power of the approach is particu-
larly apparent in the bridge example, where the absence of a ‘“‘land” signature at
c};ne eﬁd of a bridge hypothesis is used to critique and dismiss the incorrect

ypothesis.

Nonetheless, the scope of the experiments conducted in the course of the pro-
ject was constrained both by the limited available resources and by the lack of a
comprehensive set of terrain images to provide multiple examples of verified
feature types. The effect of this is that the algorithms and the models have not
undergone thorough testing to identify the extent and quality of their recognition
performance. This affects not only how well the finders recognise the features for




'Figure 3-30: Merged Line Segments




Figure 3-31: Segments Joined Over Longer Gaps
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Figure 3-32: Resuii over Extrema Background
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which they are intended but also how often they are confused by other terrain
features sharing properties with the intended feature class.

Furthermore, the models which were developed are incomplete and do not
avail themselves of significant contextual cues. For example, the bridge finder
currently checks for water and land signatures; a more complete model would per-
mit a bridge to be recognized even if there were no water ‘‘under” it, if, for exam-
ple, terrain elevation data could show that the area under the bridge was a local
minimum lying along the drainage pattern for the region and that a lack of water
could be explained by summer or dry spell.

This additional model knowledge will come out of the recornmended addi-
tional testing and evaluation. The models are developed and improved based on a
cycle which tests, identifies mistakes and inadequacies in the recognition and
enhances the model base to provide sufficient knowledge to avoid the diagnosed
problem. Another fertile source of expertise to complete the recognition models
for terrain features can be found in the training literature for photointerpreters
and in discussions with them regarding specific imagery.

Finally, our experiments have convinced us that the continuation of the
effort discussed in this final report will lead to the development of feature finders
for the additional feature classes mentioned above. The reader is also directed to
Sections 1.4 and 1.5 of the Executive Summary for additional conclusions and
recommendations.
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4. GLOSSARY

angle of illumination (regard) The direction in which the radar beam is emit-
ted from a SAR sensor.

ATFE An acronym for Automated Terrain Feature Eztraction.

blackboard system A decentralized AI architecture in which autonomous
knowledge sources read from and post to a shared data area through blackboard
manager(s).

bottom-up A term used in the field of Artificial Intelligence to describe a data-
driven technique for search in which properties of the data drive system processing
(e.g., the search for terrain features). Opposite in meaning to top-down.

direction of illumination The direction in a SAR image from which the radar
beam is emitted. Generally, the direction of il'umination is considered to come
from the top of the SAR image.

finder A recognition procedure defined for a specific terrain feature. For example,
a bridge finder is responsible for hypothesizing instances (occurrences) of a bridge
in a SAR image.

focus of attention A goal directed narrowing of a problem space.

functional terrain feature properties A definition of the functional relation-
ships beiween a given terrain feature and other terrain features.

Image Structure DataBase (ISDB) A component of the CSI conceptual system
architecture; it contains descriptions of image structure which are produced by the
perceptual grouper.

island-driving A reasoning control technique where hypotheses with high cer-
tainty (i.e., “islands”) are used to ‘‘drive’’ subsequent hypothesis reasoning.

knowledge source A routine which interprets a well-defined (though perhaps
restricted) domain (i.e., 2 domain expert).

Medial Axis Transform (MAT) A technique for computing a skeleton (linear)
representation of an area region; a method of region thinning.

perceptual grouping A term defined by [17] which describes the systematic spa-
tial aggregation of more primitive image structures into more abstract image
structures.

platform parameters The parameters which specify the position and orienta-
tion of the SAR sensor in three-dimensional space (e.g., elevation, angle of regard,
latitude and longitude).

recognition procedure An algorithmic specification of the operations required to
hypothesize instances of a terrain feature in a SAR image. A recognition
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procedure for a specific terrain feature is called a finder.

measurable terrain feature properties A definition of the visible properties of
a terrain feature in imagery (e.g., bridges appear bright in SAR images).

SAR image An image formed using Synthetic Aperture Radar (see Appendix A)
top-down A term used in the field of Artificial Intelligence to describe a tech-

nique in which a model is used to guide the search through the data (¢ .,
imagery). Opposite in meaning to bottom-up.

4-2




5. REFERENCES

(1] D.H. Ballard and C.M. Brown, Computer Vision, Prentice-Hall, Englewood
Cliffs, New Jersey, 1982,

[2] The Handbook of Artificial Intelligence, vols. 1-3, A. Barr, E.A. Feigenbaum,
and P. Cohen(eds.), William Kaufmann, Stanford, California, 1981.

[3) T.O. Binford, T.S. Levitt, and W.B. Mann, “Bayecian Inference in Model-
Based Machine Vision,”” Proceedings AAAI Uncertainty in Artificial Intells-
gence Workshop, Seattle, Washington, July 1987.

[4] P.J. Burt, “Fast Filter Transforms for Image Processing,” Computer Graphics
and Image Processing, vol. 16, pp. 20-51, 1981.

[5] J.F. Canny, “Finding Edges and Lines in Images,”” AI-TR-720, MIT Artificial
Intelligence Laboratory, Cambridge, Massachusetts, June 1983.

[6] E. Davis, Representing and Acquiring Geographic Knowledge, Morgan Kauf-
man, Los Altos, California, 19886.

[7] Defense Mapping Agency, Product Specifications for Digital Landmass System
(DLMS) Data Base, Second Edition, April 1983.

[8] J.D. Foley and A. van Dam, Fundamentals of Interactive Computer Graphics,
Addison-Wesley, Reading, Massachusetts, 1982.

(9] D. Franks, C. McKee, and G.D. Conner, Terrain Analysis Techdase 0-Domain
Knowledge, ADRIES Internal Memorandum, Advanced Decision Systems,
Mountain View, California, December 1986.

[10] E.B. Goldstein, Sensaiton and Perception, Wadsworth, Belmont, California,
1980.

[11] Goodyear Aerospace, Interpretation Teztbook for the AN/UPD-4 Radar Sys-
tem, GTA-6070A, July 1977.

(12] P. Kahn, L. Kitchen, and E.M. Riseman, “Real-Time Feature Extraction: a
Fast Line Finder for Vision-Guided Robot Navigation,” COINS Technical
Report 87-57, University of Massachusetts, Amherst, Massachusetts, July
1987.

(13] L.J. Kitchen and J.A. Malin, “The Effect of Spatial Discretization on the
Magnitude and Direction Response of Simple Differential Edge Operators on a
Step Edge Part 1: Square Pixel Receptive Fields,”” COINS Techuical Report
87-34, University of Massachusetts, Amherst, Massachisetts, April 1987.

(14] D.T. Lawton, J. Glicksman, G.D. Conner, and R.J. Drazovich, ‘‘Linear
Feature Extraction from Radar Imagery,” Final Technical Report, ETI.LA-
L7-84 1521-E241-83, U.S. Army Engineer Topographic Laboratories, Fort Bel-
voir, Virginia, August 1985,

5-1




r

(15] L. D. Erman and V. R. Lesser, “A Multi-Level Organization for Problem
Solving using Many Diverse, Cooperating Sources of Knowledge” 1JCAI 4, pp.
483-490.

(18] M.D. Levine, Vision in Man and Machine, McGraw Hill, New York City, New
York, 1985.

[17] D.G. Lowe, Perceptual Organization and Visual Recognition, Kluwer
Academic, Boston, 1985.

(18] D. Marr, Vision, W.H. Freeman: New York, 1982.

[19] Y. Ohta, Knowledge-Based Interpretation of Outdoor Natural Color Scenes,
Pitman Advanced, Marshfield, Massachusetts, 1985.

[20] R.F. Pascucci, ‘““‘An Automated System for the Computer-Assisted
Identification of Features on SAR Imagery,”” Final Technical Report, U.S.
Army Engineer Topographic Laboratories, ETL-0415, Jan. 1985 -- Dec. 1985.

[21] A. Rosenfeld and A.C. Kak, Digital Picture Processing, Academic Press, New
York City, New York, 1978.

[22] K.J. Schmucker, Fuzzy Seis, Natural Language, Computations, and Risk
Ana 15, Computer Science Press, Rockville, Maryland, 1984.

[23] D.S. Simonett and R.E. Davis, “Image Analysis-Active Microwave,” Manual
of Remote Sensing, vol. I, American Society of Photogrammetry, 1983.

[24] M.A. Vogel and G.S. Zabele, *“SAR DTED/DFAD Auto Extraction,” Final
Technical Report, Rome Air Development Center (Air Force Systems Com-
mand), RADC-TR-86-18, March 1986.

[25] T.E. Weymouth, “Using Object Descriptions in a Schema Network for
Machine Vision” COINS Technical Report 86-24, University of Mas-
sachusetts, Amherst, MA May 1986.

[26] G.D. Conner, D.T. Lawton, C.C. McConnell, and D.L. Milgram, ‘‘Linear
Feature Extraction from Radar Imagery, SBIR Phase [I, Base Contract”,
Final Technical Report, ETL-0469, U.S. Army Engineer Topographic Labora-
tories, Fort Belvoir, Virginia, July 1987.

[27] G.D. Conner, D.L. Mi'gram, D.T. Lawton, and C.C. McConnell, *Linear
Feature Extraction from Radar Imagery, SBIR Phase II, Option I”, Final
Technical Report, ETL-0469, U.S. Army Engineer Topographic Laboratories,
Fort Betvoir, Virginia, April 1988.




